Artificial gravity is the creation of an inertial force that mimics the effects of a gravitational force, usually by rotation.
Artificial gravity, or rotational gravity, is thus the appearance of a centrifugal force in a rotating frame of reference (the transmission of centripetal acceleration via normal force in the non-rotating frame of reference), as opposed to the force experienced in linear acceleration, which by the equivalence principle is indistinguishable from gravity.
In a more general sense, "artificial gravity" may also refer to the effect of linear acceleration, e.g. by means of a rocket engine.
Rotational simulated gravity has been used in simulations to help astronauts train for extreme conditions.
Rotational simulated gravity has been proposed as a solution in human spaceflight to the adverse health effects caused by prolonged weightlessness.
However, there are no current practical outer space applications of artificial gravity for humans due to concerns about the size and cost of a spacecraft necessary to produce a useful centripetal force comparable to the gravitational field strength on Earth (g).
Scientists are concerned about the effect of such a system on the inner ear of the occupants. The concern is that using centripetal force to create artificial gravity will cause disturbances in the inner ear leading to nausea and disorientation. The adverse effects may prove intolerable for the occupants.
In the context of a rotating space station, it is the radial force provided by the spacecraft's hull that acts as centripetal force. Thus, the "gravity" force felt by an object is the centrifugal force perceived in the rotating frame of reference as pointing "downwards" towards the hull.
By Newton's Third Law, the value of little g (the perceived "downward" acceleration) is equal in magnitude and opposite in direction to the centripetal acceleration.
From the perspective of people rotating with the habitat, artificial gravity by rotation behaves similarly to normal gravity but with the following differences, which can be mitigated by increasing the radius of a space station.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
Weightlessness is the complete or near-complete absence of the sensation of weight. It is also termed zero gravity, zero G-force, or zero-G. Micro-g environment (also μg, often referred to by the term microgravity) is more or less synonymous, with the recognition that g-forces are never exactly zero. Weight is a measurement of the force on an object at rest in a relatively strong gravitational field (such as on the surface of the Earth). These weight-sensations originate from contact with supporting floors, seats, beds, scales, and the like.
Anti-gravity (also known as non-gravitational field) is a hypothetical phenomenon of creating a place or object that is free from the force of gravity. It does not refer to the lack of weight under gravity experienced in free fall or orbit, or to balancing the force of gravity with some other force, such as electromagnetism or aerodynamic lift. Anti-gravity is a recurring concept in science fiction. Examples are the gravity blocking substance "Cavorite" in H. G.
A centrifuge is a device that uses centrifugal force to subject a specimen to a specified constant force, for example to separate various components of a fluid. This is achieved by spinning the fluid at high speed within a container, thereby separating fluids of different densities (e.g. cream from milk) or liquids from solids. It works by causing denser substances and particles to move outward in the radial direction. At the same time, objects that are less dense are displaced and moved to the centre.
The main goal of my research is to establish guidelines for workplace design based on human biomechanics: specifically sitting workplaces and handling areas in 1/6G-1/3G (Moon, Mars) conditions. Such a workplace could be used in long-term space missions in ...
EPFL2022
, ,
We study the drainage of a viscous liquid film coating the outside of a solid horizontal cylinder, where gravity acts vertically. We focus on the limit of large Ohnesorge numbers Oh, where inertia is negligible compared to viscous effects. We first study t ...
Does gravity affect decision-making? This question comes into sharp focus as plans for interplanetary human space missions solidify. In the framework of Bayesian brain theories, gravity encapsulates a strong prior, anchoring agents to a reference frame via ...