An artificial enzyme is a synthetic organic molecule or ion that recreates one or more functions of an enzyme. It seeks to deliver catalysis at rates and selectivity observed in naturally occurring enzymes.
Enzyme catalysis of chemical reactions occur with high selectivity and rate. The substrate is activated in a small part of the enzyme's macromolecule called the active site. There, the binding of a substrate close to functional groups in the enzyme causes catalysis by so-called proximity effects. It is possible to create similar catalysts from small molecules by combining substrate-binding with catalytic functional groups. Classically, artificial enzymes bind substrates using receptors such as cyclodextrin, crown ethers, and calixarene.
Artificial enzymes based on amino acids or peptides have expanded the field of artificial enzymes or enzyme mimics. For instance, scaffolded histidine residues mimic certain metalloproteins and enzymes such as hemocyanin, tyrosinase, and catechol oxidase).
Artificial enzymes have been designed from scratch via a computational strategy using Rosetta. A December 2014 publication reported active enzymes made from molecules that do not occur in nature. In 2016, a book chapter entitled "Artificial Enzymes: The Next Wave" was published.
Nanozymes are nanomaterials with enzyme-like characteristics. They have been explored for applications such as biosensing, bioimaging, tumor diagnosis and therapy, and anti-biofouling.
In 1996 and 1997, Dugan et al. discovered superoxide dismutase (SOD)-mimicking activities of fullerene derivatives.
The term "nanozyme" was coined in 2004 by Flavio Manea, Florence Bodar Houillon, Lucia Pasquato, and Paolo Scrimin. A 2005 review article attributed this term to "analogy with the activity of catalytic polymers (synzymes)", based on the "outstanding catalytic efficiency of some of the functional nanoparticles synthesized". In 2006, nanoceria (CeO2 nanoparticles) was reported to prevent retinal degeneration induced by intracellular peroxides (toxic reactive oxygen intermediates) in rat.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
Nanomaterials describe, in principle, materials of which a single unit is sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale). Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.
This thesis introduces spectroscopy-free Raman biosensing, which may find increasing use in the next generation of wearable devices for preventive healthcare. While wearables have made substantial advancements in detecting physical biomarkers, they have ye ...
EPFL2024
, ,
Control over synthetic DNA-based nanodevices can be achieved with a variety of physical and chemical stimuli. Actuation with light, however, is as advantageous as difficult to implement without modifying DNA strands with photo-switchable groups. Herein, we ...
Catalytic hydrodeoxygenation is of prime importance in the valorization of biomass-based feedstocks to produce essential chemicals and fuels. To carry out this process in a more cost-effective and sustainable manner, the use of 3D-metal-based nanostructure ...