Summary
In coding theory, an erasure code is a forward error correction (FEC) code under the assumption of bit erasures (rather than bit errors), which transforms a message of k symbols into a longer message (code word) with n symbols such that the original message can be recovered from a subset of the n symbols. The fraction r = k/n is called the code rate. The fraction k’/k, where k’ denotes the number of symbols required for recovery, is called reception efficiency. Optimal erasure codes have the property that any k out of the n code word symbols are sufficient to recover the original message (i.e., they have optimal reception efficiency). Optimal erasure codes are maximum distance separable codes (MDS codes). and Parity bit Parity check is the special case where n = k + 1. From a set of k values , a checksum is computed and appended to the k source values: The set of k + 1 values is now consistent with regard to the checksum. If one of these values, , is erased, it can be easily recovered by summing the remaining variables: In the simple case where k = 2, redundancy symbols may be created by sampling different points along the line between the two original symbols. This is pictured with a simple example, called err-mail: Alice wants to send her telephone number (555629) to Bob using err-mail. Err-mail works just like e-mail, except About half of all the mail gets lost. Messages longer than 5 characters are illegal. It is very expensive (similar to air-mail). Instead of asking Bob to acknowledge the messages she sends, Alice devises the following scheme. She breaks her telephone number up into two parts a = 555, b = 629, and sends 2 messages – "A=555" and "B=629" – to Bob. She constructs a linear function, , in this case , such that and . She computes the values f(3), f(4), and f(5), and then transmits three redundant messages: "C=703", "D=777" and "E=851". Bob knows that the form of f(k) is , where a and b are the two parts of the telephone number. Now suppose Bob receives "D=777" and "E=851".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
CS-438: Decentralized systems engineering
A decentralized system is one that works when no single party is in charge or fully trusted. This course teaches decentralized systems principles while guiding students through the engineering of thei
COM-102: Advanced information, computation, communication II
Text, sound, and images are examples of information sources stored in our computers and/or communicated over the Internet. How do we measure, compress, and protect the informatin they contain?
CS-308: Introduction to quantum computation
The course introduces the paradigm of quantum computation in an axiomatic way. We introduce the notion of quantum bit, gates, circuits and we treat the most important quantum algorithms. We also touch
Show more
Related publications (244)
Related concepts (3)
Fountain code
In coding theory, fountain codes (also known as rateless erasure codes) are a class of erasure codes with the property that a potentially limitless sequence of encoding symbols can be generated from a given set of source symbols such that the original source symbols can ideally be recovered from any subset of the encoding symbols of size equal to or only slightly larger than the number of source symbols. The term fountain or rateless refers to the fact that these codes do not exhibit a fixed code rate.
Error correction code
In computing, telecommunication, information theory, and coding theory, forward error correction (FEC) or channel coding is a technique used for controlling errors in data transmission over unreliable or noisy communication channels. The central idea is that the sender encodes the message in a redundant way, most often by using an error correction code or error correcting code (ECC). The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors.
Low-density parity-check code
In information theory, a low-density parity-check (LDPC) code is a linear error correcting code, a method of transmitting a message over a noisy transmission channel. An LDPC code is constructed using a sparse Tanner graph (subclass of the bipartite graph). LDPC codes are , which means that practical constructions exist that allow the noise threshold to be set very close to the theoretical maximum (the Shannon limit) for a symmetric memoryless channel.