Concept

Thiomer

Thiolated polymers designated thiomers are functional polymers used in biotechnology product development with the intention to prolong mucosal drug residence time and to enhance absorption of drugs. The name thiomer was coined by Andreas Bernkop-Schnürch in 2000. Thiomers have thiol bearing side chains. Sulfhydryl ligands of low molecular mass are covalently bound to a polymeric backbone consisting of mainly biodegradable polymers, such as chitosan, hyaluronic acid, cellulose derivatives, pullulan, starch, gelatin, polyacrylates, cyclodextrins, or silicones. Thiomers exhibit properties potentially useful for non-invasive drug delivery via oral, ocular, nasal, vesical, buccal and vaginal routes. Thiomers show also potential in the field of tissue engineering and regenerative medicine. Various thiomers such as thiolated chitosan and thiolated hyaluronic acid are commercialy available as scaffold materials. Thiomers can be directly compressed to tablets or given as solutions. In 2012, a second generation of thiomers – called "preactivated" or "S-protected" thiomers – were introduced. In contrast to thiomers of the first generation, preactivated thiomers are stable towards oxidation and display comparatively higher mucoadhesive and permeation enhancing properties. Approved thiomer products for human use are for example eyedrops for treatment of dry eye syndrome or adhesive gels for treatment of nickel allergy. Thiomers are capable of forming disulfide bonds with cysteine substructures of the mucus gel layer covering mucosal membranes. Because of this property they exhibit up to 100-fold higher mucoadhesive properties in comparison to the corresponding unthiolated polymers. Because of their mucoadhesive properties, thiolated polymers are an effective tool in the treatment of diseases such as dry eye, dry mouth, and dry vagina syndrome where dry mucosal surfaces are involved. Various polymers such as poloxamers exhibit in situ gelling properties. Because of these properties they can be administered as liquid formulations forming stable gels once having reached their site of application.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.