Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes derive by neutron capture is found along with the U-235 in the low enriched uranium fuel of civilian reactors.
In contrast to the low burnup of weeks or months that is commonly required to produce weapons-grade plutonium (WGPu/239Pu), the long time in the reactor that produces reactor-grade plutonium leads to transmutation of much of the fissile, relatively long half-life isotope 239Pu into a number of other isotopes of plutonium that are less fissile or more radioactive. When 239Pu absorbs a neutron, it does not always undergo nuclear fission. Sometimes neutron absorption will instead produce 240Pu at the neutron temperatures and fuel compositions present in typical light water reactors, with the concentration of 240Pu steadily rising with longer irradiation, producing lower and lower grade plutonium as time goes on.
Generation II thermal-neutron reactors (today's most numerous nuclear power stations) can reuse reactor-grade plutonium only to a limited degree as MOX fuel, and only for a second cycle. Fast-neutron reactors, of which there are a handful operating today with a half dozen under construction, can use reactor-grade plutonium fuel as a means to reduce the transuranium content of spent nuclear fuel/nuclear waste. Russia has also produced a new type of Remix fuel that directly recycles reactor grade plutonium at 1% or less concentration into fresh or re-enriched uranium fuel imitating the 1% plutonium level of high-burnup fuel.
At the beginning of the industrial scale production of plutonium-239 in war era production reactors, trace contamination or co-production with plutonium-240 was initially observed, with these trace amounts resulting in the dropping of the Thin Man weapon-design as unworkable.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In nuclear power technology, online refuelling is a technique for changing the fuel of a nuclear reactor while the reactor is critical. This allows the reactor to continue to generate electricity during routine refuelling, and therefore improve the availability and profitability of the plant. Online refuelling allows a nuclear reactor to continue to generate electricity during periods of routine refuelling, and therefore improves the availability and therefore the economy of the plant.
Nuclear transmutation is the conversion of one chemical element or an isotope into another chemical element. Nuclear transmutation occurs in any process where the number of protons or neutrons in the nucleus of an atom is changed. A transmutation can be achieved either by nuclear reactions (in which an outside particle reacts with a nucleus) or by radioactive decay, where no outside cause is needed.
Uranium mining is the process of extraction of uranium ore from the ground. Over 50 thousand tons of uranium were produced in 2019. Kazakhstan, Canada, and Australia were the top three uranium producers, respectively, and together account for 68% of world production. Other countries producing more than 1,000 tons per year included Namibia, Niger, Russia, Uzbekistan, the United States, and China. Nearly all of the world's mined uranium is used to power nuclear power plants.
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
The main focus of the lecture is on reactive hazards (thermal process safety) + introduction to explosion protection. While being based on theory, the lecture is oriented towards industrial practice.
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Nuclear fusion presents a promising clean energy source to mitigate future energy crises, with magnetic confinement fusion well-positioned to provide a baseload scenario to power future reactors. The unmitigated power exhaust of such reactors threatens its ...
Underground storage of radioactive waste is consensually recognised as the safest storage solution by European and worldwide countries relying mainly or partially on nuclear energy production. Over twenty years of research led by the French national agency ...
Microstructural evolution during in-pile irradiation, radiation damage effects and fission products behavior in UO2 nuclear fuel are key issues in understanding and for the modeling of the performance as well as safety characteristics of nuclear fuels in t ...