Evolutionary medicine or Darwinian medicine is the application of modern evolutionary theory to understanding health and disease. Modern biomedical research and practice have focused on the molecular and physiological mechanisms underlying health and disease, while evolutionary medicine focuses on the question of why evolution has shaped these mechanisms in ways that may leave us susceptible to disease. The evolutionary approach has driven important advances in the understanding of cancer, autoimmune disease, and anatomy. Medical schools have been slower to integrate evolutionary approaches because of limitations on what can be added to existing medical curricula. The International Society for Evolution, Medicine and Public Health coordinates efforts to develop the field. It owns the Oxford University Press journal Evolution, Medicine and Public Health and The Evolution and Medicine Review.
Utilizing the Delphi method, 56 experts from a variety of disciplines, including anthropology, medicine, nursing, and biology agreed upon 14 core principles intrinsic to the education and practice of evolutionary medicine. These 14 principles can be further grouped into five general categories: question framing, evolution I and II (with II involving a higher level of complexity), evolutionary trade-offs, reasons for vulnerability, and culture. Additional information regarding these principles may be found in the table below.
Adaptation works within constraints, makes compromises and trade-offs, and occurs in the context of different forms of competition.
Adaptations can only occur if they are evolvable. Some adaptations which would prevent ill health are therefore not possible.
DNA cannot be totally prevented from undergoing somatic replication corruption; this has meant that cancer, which is caused by somatic mutations, has not (so far) been eliminated by natural selection.
Humans cannot biosynthesize vitamin C, and so risk scurvy, vitamin C deficiency disease, if dietary intake of the vitamin is insufficient.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A trade-off (or tradeoff) is a situational decision that involves diminishing or losing one quality, quantity, or property of a set or design in return for gains in other aspects. In simple terms, a tradeoff is where one thing increases, and another must decrease. Tradeoffs stem from limitations of many origins, including simple physics – for instance, only a certain volume of objects can fit into a given space, so a full container must remove some items in order to accept any more, and vessels can carry a few large items or multiple small items.
Evolutionary physiology is the study of the biological evolution of physiological structures and processes; that is, the manner in which the functional characteristics of individuals in a population of organisms have responded to natural selection across multiple generations during the history of the population. It is a sub-discipline of both physiology and evolutionary biology. Practitioners in the field come from a variety of backgrounds, including physiology, evolutionary biology, ecology, and genetics.
Sickness behavior is a coordinated set of adaptive behavioral changes that develop in ill individuals during the course of an infection. They usually, but not always, accompany fever and aid survival. Such illness responses include lethargy, depression, anxiety, malaise, loss of appetite, sleepiness, hyperalgesia, reduction in grooming and failure to concentrate. Sickness behavior is a motivational state that reorganizes the organism's priorities to cope with infectious pathogens.
Explores strategies of conjugal behavior, including short-term mating and extramarital affairs, analyzing differences between men and women in mate selection.
Explores predicting protein structure from sequence data and inferring interaction partners through Direct Coupling Analysis and the Iterative Pairing Algorithm.
One of the main challenges hampering the development of kinetic models is the lack of kinetic parameters for many enzymatic reactions. Here, the authors introduce a framework to explore the catalytically optimal operating conditions of any complex enzyme m ...
Coral reefs around the world are under threat from anomalous heat waves that are causing the widespread decline of hard corals. Different coral taxa are known to have different sensitivities to heat, although variation in susceptibilities have also been ob ...
Contemporary genomic approaches allow us to seek answers to biological questions that were previously out of reach. Genome-wide association studies (GWAS) have identified numerous genetic polymorphisms associated with human diseases, providing new insight ...