In computer science, the Boolean (sometimes shortened to Bool) is a data type that has one of two possible values (usually denoted true and false) which is intended to represent the two truth values of logic and Boolean algebra. It is named after George Boole, who first defined an algebraic system of logic in the mid 19th century. The Boolean data type is primarily associated with conditional statements, which allow different actions by changing control flow depending on whether a programmer-specified Boolean condition evaluates to true or false. It is a special case of a more general logical data type—logic does not always need to be Boolean (see probabilistic logic). In programming languages with a built-in Boolean data type, such as Pascal and Java, the comparison operators such as > and ≠ are usually defined to return a Boolean value. Conditional and iterative commands may be defined to test Boolean-valued expressions. Languages with no explicit Boolean data type, like C90 and Lisp, may still represent truth values by some other data type. Common Lisp uses an empty list for false, and any other value for true. The C programming language uses an integer type, where relational expressions like i > j and logical expressions connected by && and || are defined to have value 1 if true and 0 if false, whereas the test parts of if, while, for, etc., treat any non-zero value as true. Indeed, a Boolean variable may be regarded (and implemented) as a numerical variable with one binary digit (bit), or as a bit string of length one, which can store only two values. The implementation of Booleans in computers are most likely represented as a full word, rather than a bit; this is usually due to the ways computers transfer blocks of information. Most programming languages, even those with no explicit Boolean type, have support for Boolean algebraic operations such as conjunction (AND, &, *), disjunction (OR, |, +), equivalence (EQV, =, ==), exclusive or/non-equivalence (XOR, NEQV, ^, !=, ¬), and negation (NOT, ~, !, ¬).

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (16)
CS-550: Formal verification
We introduce formal verification as an approach for developing highly reliable systems. Formal verification finds proofs that computer systems work under all relevant scenarios. We will learn how to u
CS-320: Computer language processing
We teach the fundamental aspects of analyzing and interpreting computer languages, including the techniques to build compilers. You will build a working compiler from an elegant functional language in
ME-213: Programmation pour ingénieur
Mettre en pratique les bases de la programmation vues au semestre précédent. Développer un logiciel structuré. Méthode de debug d'un logiciel. Introduction à la programmation scientifique. Introductio
Show more
Related lectures (84)
Introduction to VHDL
Introduces VHDL, covering its history, key features, library system, entity, architecture, signals, and data types.
Enums: Pure Data
Covers enums as a shorthand for case class hierarchies, focusing on modeling pure data.
Python Programming Basics
Covers the basics of Python programming, including input/output operations, loops, and conditional statements.
Show more
Related publications (68)
Related concepts (27)
Go (programming language)
Go is a statically typed, compiled high-level programming language designed at Google by Robert Griesemer, Rob Pike, and Ken Thompson. It is syntactically similar to C, but also has memory safety, garbage collection, structural typing, and CSP-style concurrency. It is often referred to as Golang because of its former domain name, golang.org, but its proper name is Go. There are two major implementations: Google's self-hosting "gc" compiler toolchain, targeting multiple operating systems and WebAssembly.
S-expression
In computer programming, an S-expression (or symbolic expression, abbreviated as sexpr or sexp) is an expression in a like-named notation for nested list (tree-structured) data. S-expressions were invented for and popularized by the programming language Lisp, which uses them for source code as well as data. In the usual parenthesized syntax of Lisp, an S-expression is classically defined as an atom of the form x, or an expression of the form (x . y) where x and y are S-expressions.
C Sharp (programming language)
C# (pronounced ) is a general-purpose high-level programming language supporting multiple paradigms. C# encompasses static typing, strong typing, lexically scoped, imperative, declarative, functional, generic, object-oriented (class-based), and component-oriented programming disciplines. The C# programming language was designed by Anders Hejlsberg from Microsoft in 2000 and was later approved as an international standard by Ecma (ECMA-334) in 2002 and ISO/IEC (ISO/IEC 23270) in 2003. Microsoft introduced C# along with .
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.