In geology, a facies (ˈfeɪʃɪ.iːz , USalsoˈfeɪʃiːz ; same pronunciation and spelling in the plural) is a body of rock with specified characteristics, which can be any observable attribute of rocks (such as their overall appearance, composition, or condition of formation), and the changes that may occur in those attributes over a geographic area.
A facies encompasses all of the characteristics of a rock including its chemical, physical, and biological features that distinguish it from adjacent rock.
The term facies was introduced by the Swiss geologist Amanz Gressly in 1838 and was part of his significant contribution to the foundations of modern stratigraphy, which replaced the earlier notions of Neptunism.
Ideally, a sedimentary facies is a distinctive rock unit that forms under certain conditions of sedimentation, reflecting a particular process or environment. Sedimentary facies are either descriptive or interpretative. Sedimentary facies are bodies of sediment that are recognizably distinct from adjacent sediments that resulted from different depositional environments. Generally, geologists distinguish facies by the aspect of the rock or sediment being studied. Facies based on petrological characters (such as grain size and mineralogy) are called lithofacies, whereas facies based on fossil content are called biofacies.
A facies is usually further subdivided, for example, one might refer to a "tan, cross-bedded oolitic limestone facies" or a "shale facies". The characteristics of the rock unit come from the depositional environment and from the original composition. Sedimentary facies reflect their depositional environment, each facies being a distinct kind of sediment for that area or environment.
Since its inception in 1838, the facies concept has been extended to related geological concepts. For example, characteristic associations of organic microfossils, and particulate organic material, in rocks or sediments, are called palynofacies. Discrete seismic units are similarly referred to as seismic facies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The lithology of a rock unit is a description of its physical characteristics visible at outcrop, in hand or core samples, or with low magnification microscopy. Physical characteristics include colour, texture, grain size, and composition. Lithology may refer to either a detailed description of these characteristics, or a summary of the gross physical character of a rock. Examples of lithologies in the second sense include sandstone, slate, basalt, or limestone.
In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline (in which the components are intergrown and interlocking crystals), fragmental (in which there is an accumulation of fragments by some physical process), aphanitic (in which crystals are not visible to the unaided eye), and glassy (in which the particles are too small to be seen and amorphously arranged).
Stratigraphy is a branch of geology concerned with the study of rock layers (strata) and layering (stratification). It is primarily used in the study of sedimentary and layered volcanic rocks. Stratigraphy has three related subfields: lithostratigraphy (lithologic stratigraphy), biostratigraphy (biologic stratigraphy), and chronostratigraphy (stratigraphy by age). Catholic priest Nicholas Steno established the theoretical basis for stratigraphy when he introduced the law of superposition, the principle of original horizontality and the principle of lateral continuity in a 1669 work on the fossilization of organic remains in layers of sediment.
Little attention has been paid to how aquatic habitat characteristics affect the traits of plant species. Nuphar lutea (L.) Sm. is a keystone species distributed across temperate regions of Europe, northwest Africa and western Asia. Its apparently low phen ...
2019
Strain localization and the development of ductile shear zones in the middle and lower crust play major roles in lithosphere dynamics. Geophysical imaging of ductile shear zones is an issue for ore geology, for the understanding of the lithosphere rheology ...
2019
, , ,
An experimental investigation to analyse the anisotropic volumetric response of shaly and sandy facies of Opalinus Clay upon suction variations is presented. Obtained results demonstrate the different behaviour of the tested facies to a wetting-drying cycl ...