Referential transparencyIn analytic philosophy and computer science, referential transparency and referential opacity are properties of linguistic constructions, and by extension of languages. A linguistic construction is called referentially transparent when for any expression built from it, replacing a subexpression with another one that denotes the same value does not change the value of the expression. Otherwise, it is called referentially opaque.
OCamlOCaml (oʊˈkæməl , formerly Objective Caml) is a general-purpose, high-level multi-paradigm programming language which extends the Caml dialect of ML with object-oriented features. OCaml was created in 1996 by Xavier Leroy, Jérôme Vouillon, Damien Doligez, Didier Rémy, Ascánder Suárez, and others. The OCaml toolchain includes an interactive top-level interpreter, a bytecode compiler, an optimizing native code compiler, a reversible debugger, and a package manager (OPAM).
Type signatureIn computer science, a type signature or type annotation defines the inputs and outputs for a function, subroutine or method. A type signature includes the number, types, and order of the arguments contained by a function. A type signature is typically used during overload resolution for choosing the correct definition of a function to be called among many overloaded forms. In C and C++, the type signature is declared by what is commonly known as a function prototype.
Function composition (computer science)In computer science, function composition is an act or mechanism to combine simple functions to build more complicated ones. Like the usual composition of functions in mathematics, the result of each function is passed as the argument of the next, and the result of the last one is the result of the whole. Programmers frequently apply functions to results of other functions, and almost all programming languages allow it. In some cases, the composition of functions is interesting as a function in its own right, to be used later.
Partial applicationIn computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function , we might fix (or 'bind') the first argument, producing a function of type . Evaluation of this function might be represented as . Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
Non-local variableIn programming language theory, a non-local variable is a variable that is not defined in the local scope. While the term can refer to global variables, it is primarily used in the context of nested and anonymous functions where some variables can be in neither the local nor the global scope. In Lua they are called the upvalues of the function. In the Python 3 example that follows there is a nested function inner defined in the scope of another function outer.
Fold (higher-order function)In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value. Typically, a fold is presented with a combining function, a top node of a data structure, and possibly some default values to be used under certain conditions.
Java version historyThe Java language has undergone several changes since JDK 1.0 as well as numerous additions of classes and packages to the standard library. Since J2SE 1.4, the evolution of the Java language has been governed by the Java Community Process (JCP), which uses Java Specification Requests (JSRs) to propose and specify additions and changes to the Java platform. The language is specified by the Java Language Specification (JLS); changes to the JLS are managed under JSR 901.
Map (higher-order function)In many programming languages, map is the name of a higher-order function that applies a given function to each element of a collection, e.g. a list or set, returning the results in a collection of the same type. It is often called apply-to-all when considered in functional form. The concept of a map is not limited to lists: it works for sequential containers, tree-like containers, or even abstract containers such as futures and promises. Suppose we have a list of integers [1, 2, 3, 4, 5] and would like to calculate the square of each integer.
Purely functional programmingIn computer science, purely functional programming usually designates a programming paradigm—a style of building the structure and elements of computer programs—that treats all computation as the evaluation of mathematical functions. Program state and mutable objects are usually modeled with temporal logic, as explicit variables that represent the program state at each step of a program execution: a variable state is passed as an input parameter of a state-transforming function, which returns the updated state as part of its return value.