Concept

Triangular hebesphenorotunda

In geometry, the triangular hebesphenorotunda is one of the Johnson solids (J_92). It is one of the elementary Johnson solids, which do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. However, it does have a strong relationship to the icosidodecahedron, an Archimedean solid. Most evident is the cluster of three pentagons and four triangles on one side of the solid. If these faces are aligned with a congruent patch of faces on the icosidodecahedron, then the hexagonal face will lie in the plane midway between two opposing triangular faces of the icosidodecahedron. The triangular hebesphenorotunda also has clusters of faces that can be aligned with corresponding faces of the rhombicosidodecahedron: the three lunes, each lune consisting of a square and two antipodal triangles adjacent to the square. The faces around each (3^3.5) vertex can also be aligned with the corresponding faces of various diminished icosahedra. Johnson uses the prefix hebespheno- to refer to a blunt wedge-like complex formed by three adjacent lunes, a lune being a square with equilateral triangles attached on opposite sides. The suffix (triangular) -rotunda refers to the complex of three equilateral triangles and three regular pentagons surrounding another equilateral triangle, which bears structural resemblance to the pentagonal rotunda. The triangular hebesphenorotunda is the only Johnson solid with faces of 3, 4, 5 and 6 sides. Cartesian coordinates for the triangular hebesphenorotunda with edge length – 1 are given by the union of the orbits of the points under the action of the group generated by rotation by 120° around the z-axis and the reflection about the yz-plane. Here, tau = + 1/2 (sometimes written φ) is the golden ratio. The first point generates the triangle opposite the hexagon, the second point generates the bases of the triangles surrounding the previous triangle, the third point generates the tips of the pentagons opposite the first triangle, and the last point generates the hexagon.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.