Wingtip vortices are circular patterns of rotating air left behind a wing as it generates lift. The name is a misnomer because the cores of the vortices are slightly inboard of the wing tips. Wingtip vortices are sometimes named trailing or lift-induced vortices because they also occur at points other than at the wing tips. Indeed, vorticity is trailed at any point on the wing where the lift varies span-wise (a fact described and quantified by the lifting-line theory); it eventually rolls up into large vortices near the wingtip, at the edge of flap devices, or at other abrupt changes in wing planform. Wingtip vortices are associated with induced drag, the imparting of downwash, and are a fundamental consequence of three-dimensional lift generation. Careful selection of wing geometry (in particular, wingspan), as well as of cruise conditions, are design and operational methods to minimize induced drag. Wingtip vortices form the primary component of wake turbulence. Depending on ambient atmospheric humidity as well as the geometry and wing loading of aircraft, water may condense or freeze in the core of the vortices, making the vortices visible. When a wing generates aerodynamic lift, it results in a region of downwash between the two vortices. Three-dimensional lift and the occurrence of wingtip vortices can be approached with the concept of horseshoe vortex and described accurately with the Lanchester–Prandtl theory. In this view, the trailing vortex is a continuation of the wing-bound vortex inherent to the lift generation. Wingtip vortices are associated with induced drag, an unavoidable consequence of three-dimensional lift generation. The rotary motion of the air within the shed wingtip vortices (sometimes described as a "leakage") reduces the effective angle of attack of the air on the wing. The lifting-line theory describes the shedding of trailing vortices as span-wise changes in lift distribution. For a given wing span and surface, minimal induced drag is obtained with an elliptical lift distribution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MSE-438: Superconducting electronics: A materials perspective
Introduction to superconducting electronic applications and their material requirements, including the fundamental phenomenology of superconductors. Key applications and their material requirements: a
Related concepts (10)
Lift-induced drag
In aerodynamics, lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as . For a constant amount of lift, induced drag can be reduced by increasing airspeed.
Vortex
In fluid dynamics, a vortex (: vortices or vortexes) is a region in a fluid in which the flow revolves around an axis line, which may be straight or curved. Vortices form in stirred fluids, and may be observed in smoke rings, whirlpools in the wake of a boat, and the winds surrounding a tropical cyclone, tornado or dust devil. Vortices are a major component of turbulent flow. The distribution of velocity, vorticity (the curl of the flow velocity), as well as the concept of circulation are used to characterise vortices.
Lift-to-drag ratio
In aerodynamics, the lift-to-drag ratio (or L/D ratio) is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions. For an aerofoil wing or powered aircraft, the L/D is specified when in straight and level flight. For a glider it determines the glide ratio, of distance travelled against loss of height.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.