Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This study was conducted as part of research line addressing the mechanical response of periodontal ligament (PDL) to tensile-compressive sinusoidal loading The aim of the present project was to determine the effect of three potential sources of variabilit ...
Orthodontic treatments are all based on the experimental evidence that teeth can be forced to move in the dental arch by means of applied mechanical forces. Since it allows for prediction of dental mobility, the mechanical characterization of the tissues i ...
Mechanical testing of the periodontal ligament requires a practical experimental model. Bovine teeth are advantageous in terms of size and availability, but information is lacking as to the anatomy and histology of their periodontium. The aim of this study ...
The preliminary conceptual design for the Electron Cyclotron (EC) system of the future European DEMOnstration fusion power plant is ongoing in the EUROfusion Consortium. This represents one of the key aspects in order to assess the performances and the int ...
The recapitulation of tissue organization and function in vitro is one of the main objectives of tissue engineering. Proper tissue function depends on the spatial assembly and interactions between key components such as cells, growth factors, signaling cue ...
Harmonic tension–compression tests at 0.1, 0.5 and 1 Hz on hydrated bovine periodontal ligament (PDL) were numerically simulated. The process was modeled by finite elements (FE) within the framework of poromechanics, with the objective of isolating the con ...
The mechanical response of the periodontal ligament (PDL) is complex. This tissue responds as a hyperelastic solid when pulled in tension while demonstrating a viscous behavior under compression. This intricacy is reflected in the tissue's morphology, whic ...
The periodontal ligament (PDL) is a highly vascularized soft connective tissue. Previous studies suggest that the viscous component of the mechanical response may be explained by the deformation-induced collapse and expansion of internal voids (i.e. chiefl ...
The periodontal ligament (PDL) functions both in tension and in compression. The presence of an extensive vascular network inside the tissue suggests a significant contribution of the fluid phase to the mechanical response. This study examined the load res ...
The soft tissue, called periodontal ligament (PDL), that connects the alveolar bone and the tooth root accounts to a large extent for the mobility, stress-distribution and, due to its viscoelastic properties, damping of the bone-tooth complex. The accurate ...