Concept

Ependyma

Summary
The ependyma is the thin neuroepithelial (simple columnar ciliated epithelium) lining of the ventricular system of the brain and the central canal of the spinal cord. The ependyma is one of the four types of neuroglia in the central nervous system (CNS). It is involved in the production of cerebrospinal fluid (CSF), and is shown to serve as a reservoir for neuroregeneration. The ependyma is made up of ependymal cells called ependymocytes, a type of glial cell. These cells line the ventricles in the brain and the central canal of the spinal cord, which become filled with cerebrospinal fluid. These are nervous tissue cells with simple columnar shape, much like that of some mucosal epithelial cells. Early monociliated ependymal cells are differentiated to multiciliated ependymal cells for their function in circulating cerebrospinal fluid. The basal membranes of these cells are characterized by tentacle-like extensions that attach to astrocytes. The apical side is covered in cilia and microvilli. Lining the CSF-filled ventricles, and spinal canal, the ependymal cells play an important role in the production and regulation of CSF. Their apical surfaces are covered in a layer of cilia, which circulate CSF around the CNS. Their apical surfaces are also covered with microvilli, which absorb CSF. Within the ventricles of the brain, a population of modified ependymal cells and capillaries together known as the tela choroidea form a structure called the choroid plexus, which produces the CSF. Modified tight junctions between epithelial cells control fluid release. This release allows free exchange between CSF and nervous tissue of brain and spinal cord. This is why sampling of CSF, such as through a spinal tap, provides information about the whole CNS. Jonas Frisén and his colleagues at the Karolinska Institute in Stockholm provided evidence that ependymal cells act as reservoir cells in the forebrain, which can be activated after stroke and as in vivo and in vitro stem cells in the spinal cord.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
BIO-480: Neuroscience: from molecular mechanisms to disease
The goal of the course is to guide students through the essential aspects of molecular neuroscience and neurodegenerative diseases. The student will gain the ability to dissect the molecular basis of
Related lectures (6)
Glia Cells: Functions and Interactions
Explores the functions and interactions of glial cells in supporting neurons, myelination, and memory formation.
Glia: Structure and Function
Explores the structure and function of glial cells in the nervous system, including their roles in myelination, synaptic transmission, and memory formation.
Single-cell and Spatially Resolved RNA-seqMOOC: Neuroscience Reconstructed: Cell Biology
Explores single-cell RNA-seq, tissue dissociation, capture methods, and differential gene expression analysis.
Show more
Related publications (18)

Multiparametric Characterization and Spatial Distribution of Different MS Lesion Phenotypes

Tobias Kober, Tom Hilbert, Gian Franco Piredda

BACKGROUND AND PURPOSE: MS lesions exhibit varying degrees of axonal and myelin damage. A comprehensive description of lesion phenotypes could contribute to an improved radiologic evaluation of smoldering inflammation and remyelination processes. This stud ...
Amer Soc Neuroradiology2024

CSF-contacting neurons respond to Streptococcus pneumoniae and promote host survival during central nervous system infection

Ludovic Pierre Gustave Keiser, Laura Desban

The pathogenic bacterium Streptococcus pneumoniae (S. pneumoniae) can invade the cerebrospinal fluid (CSF) and cause meningitis with devastating consequences. Whether and how sensory cells in the central nervous system (CNS) become activated during bacteri ...
CELL PRESS2023

Tracking the cargo of extracellular symbionts into host tissues with correlated electron microscopy and nanoscale secondary ion mass spectrometry imaging

Anders Meibom, Stéphane Laurent Escrig, Stéphanie Kéren Cohen

Extracellular bacterial symbionts communicate biochemically with their hosts to establish niches that foster the partnership. Using quantitative ion microprobe isotopic imaging (nanoscale secondary ion mass spectrometry [NanoSIMS]), we surveyed localizatio ...
WILEY2020
Show more
Related concepts (12)
Central canal
The central canal (also known as spinal foramen or ependymal canal) is the cerebrospinal fluid-filled space that runs through the spinal cord. The central canal lies below and is connected to the ventricular system of the brain, from which it receives cerebrospinal fluid, and shares the same ependymal lining. The central canal helps to transport nutrients to the spinal cord as well as protect it by cushioning the impact of a force when the spine is affected. The central canal represents the adult remainder of the central cavity of the neural tube.
Choroid plexus
The choroid plexus, or plica choroidea, is a plexus of cells that arises from the tela choroidea in each of the ventricles of the brain. Regions of the choroid plexus produce and secrete most of the cerebrospinal fluid (CSF) of the central nervous system. The choroid plexus consists of modified ependymal cells surrounding a core of capillaries and loose connective tissue. Multiple cilia on the ependymal cells move to circulate the cerebrospinal fluid. There is a choroid plexus in each of the four ventricles.
Glial fibrillary acidic protein
Glial fibrillary acidic protein (GFAP) is a protein that is encoded by the GFAP gene in humans. It is a type III intermediate filament (IF) protein that is expressed by numerous cell types of the central nervous system (CNS), including astrocytes and ependymal cells during development. GFAP has also been found to be expressed in glomeruli and peritubular fibroblasts taken from rat kidneys, Leydig cells of the testis in both hamsters and humans, human keratinocytes, human osteocytes and chondrocytes and stellate cells of the pancreas and liver in rats.
Show more