Concept

Frederick Soddy

Summary
Frederick Soddy FRS (2 September 1877 – 22 September 1956) was an English radiochemist who explained, with Ernest Rutherford, that radioactivity is due to the transmutation of elements, now known to involve nuclear reactions. He also proved the existence of isotopes of certain radioactive elements. In 1921 he received the Nobel Prize in Chemistry "for his contributions to our knowledge of the chemistry of radioactive substances, and his investigations into the origin and nature of isotopes". Soddy was a polymath who mastered chemistry, nuclear physics, statistical mechanics, finance and economics. Soddy was born at 6 Bolton Road, Eastbourne, England, the son of Benjamin Soddy, corn merchant, and his wife Hannah Green. He went to school at Eastbourne College, before going on to study at University College of Wales at Aberystwyth and at Merton College, Oxford, where he graduated in 1898 with first class honours in chemistry. He was a researcher at Oxford from 1898 to 1900. In 1900 he became a demonstrator in chemistry at McGill University in Montreal, Quebec, where he worked with Ernest Rutherford on radioactivity. He and Rutherford realized that the anomalous behaviour of radioactive elements was because they decayed into other elements. This decay also produced alpha, beta, and gamma radiation. When radioactivity was first discovered, no one was sure what the cause was. It needed careful work by Soddy and Rutherford to prove that atomic transmutation was in fact occurring. In 1903, with Sir William Ramsay at University College London, Soddy showed that the decay of radium produced helium gas. In the experiment a sample of radium was enclosed in a thin-walled glass envelope sited within an evacuated glass bulb. After leaving the experiment running for a long period of time, a spectral analysis of the contents of the former evacuated space revealed the presence of helium. Later in 1907, Rutherford and Thomas Royds showed that the helium was first formed as positively charged nuclei of helium (He2+) which were identical to alpha particles, which could pass through the thin glass wall but were contained within the surrounding glass envelope.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Advanced Analysis II: Spherical Coordinates
Covers spherical coordinates transformation, bijectivity, and applications in volume calculations.