The sigma-2 receptor (σ2R) is a sigma receptor subtype that has attracted attention due to its involvement in diseases such as cancer and neurological diseases. It is currently under investigation for its potential diagnostic and therapeutic uses. Although the sigma-2 receptor was identified as a separate pharmacological entity from the sigma-1 receptor in 1990, the gene that codes for the receptor was identified as TMEM97 only in 2017. TMEM97 was shown to regulate the cholesterol transporter NPC1 and to be involved in cholesterol homeostasis. The sigma-2 receptor is a four-pass transmembrane protein located in the endoplasmic reticulum. It has been found to play a role in both hormone signaling and calcium signaling, in neuronal signaling, in cell proliferation and death, and in binding of antipsychotics. The sigma-2 receptor is located in the lipid raft. The sigma-2 receptor is found in several areas of the brain, including high densities in the cerebellum, motor cortex, hippocampus, and substantia nigra. It is also highly expressed in the lungs, liver, and kidneys. The sigma-2 receptor takes part in a number of normal-function roles, including cell proliferation, non-neuronal, and neuronal signaling. Much of sigma-2 receptor function relies on signaling cascades. The receptor's interaction with EGFR and PGRMC1 proteins allow for sigma-2 receptors to play diverse roles within cell through Ras, PLC, and PI3K signaling. Binding of a number of hormones and steroids, including testosterone, progesterone, and cholesterol, has been found to occur with sigma-2 receptors, though in some cases with lower affinity than to the sigma-1 receptor. Signaling caused by this binding is thought to occur via a calcium secondary messenger and calcium-dependent phosphorylation, and in association with sphingolipids following endoplasmic reticulum release of calcium. Known effects include decrease of expression of effectors in the mTOR pathway, and suppression of cyclin D1 and PARP-1.
Jonathan Paz Montoya, Howard Riezman