Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This article reviews recent advances in convex optimization algorithms for Big Data, which aim to reduce the computational, storage, and communications bottlenecks. We provide an overview of this emerging field, describe contemporary approximation techniqu ...
Institute of Electrical and Electronics Engineers2014
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach state-of-the-art performance, we have devel ...
We present a performance analysis for image registration with gradient descent methods. We consider a typical multiscale registration setting where the global 2-D translation between a pair of images is estimated by smoothing the images and minimizing the ...
We present a design of a predictive control scheme for longitudinal beam dynamics in heavy ion synchrotrons. Specifically, we consider a linear-quadratic model predictive control (MPC) approach, whereby the quadratic program is solved via a fast gradient m ...
We propose a novel approach to efficiently select informative samples for large-scale learning. Instead of directly feeding a learning algorithm with a very large amount of samples, as it is usually done to reach state-of-the-art performance, we have devel ...
The convex l(1)-regularized log det divergence criterion has been shown to produce theoretically consistent graph learning. However, this objective function is challenging since the l(1)-regularization is nonsmooth, the log det objective is not globally Li ...
We consider the class of convex minimization problems, composed of a self-concordant function, such as the logdet metric, a convex data fidelity term h and, a regularizing -- possibly non-smooth -- function g. This type of problems have recently attracted ...
The convex ℓ1-regularized logdet divergence criterion has been shown to produce theoretically consistent graph learning. However, this objective function is challenging since the ℓ1-regularization is nonsmooth, the logdet objective is n ...
This paper introduces a set of algorithms for Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-Carlo estimation of upper bounds on the Bayes-optimal value function is employed to construct an optimistic policy. Secondly, gradient-based algorithm ...
We propose a convergence analysis of accelerated forward-backward splitting methods for composite function minimization, when the proximity operator is not available in closed form, and can only be computed up to a certain precision. We prove that the 1/k( ...