Concept

Air brake (aeronautics)

Summary
In aeronautics, air brakes or speed brakes are a type of flight control surface used on an aircraft to increase the drag on the aircraft. Air brakes differ from spoilers in that air brakes are designed to increase drag while making little change to lift, whereas spoilers reduce the lift-to-drag ratio and require a higher angle of attack to maintain lift, resulting in a higher stall speed. An air brake is a part of an aircraft. When extended into the airstream, it causes an increase in the drag on the aircraft. When not in use, it conforms to the local streamlined profile of the aircraft in order to help minimise the drag. In the early decades of powered flight, air brakes were flaps mounted on the wings. They were manually controlled by a lever in the cockpit, and mechanical linkages to the air brake. An early type of air brake, developed in 1931, was fitted to the aircraft wing support struts. In 1936, Hans Jacobs, who headed Nazi Germany's Deutsche Forschungsanstalt für Segelflug (DFS) glider research organization before World War II, developed blade-style self-operating dive brakes, on the upper and lower surface of each wing, for gliders. Most early gliders were equipped with spoilers on the wings in order to adjust their angle of descent during approach to landing. More modern gliders use air brakes which may spoil lift as well as increase drag, dependent on where they are positioned. A British report written in 1942 discusses the need for dive brakes to enable dive bombers, torpedo bombers and fighter aircraft to meet their respective combat performance requirements and, more generally, glide-path control. It discusses different types of air brakes and their requirements, in particular that they should have no appreciable effect on lift or trim and how this may be achieved with split trailing edge flaps on the wings, for example. There was also a requirement to vent the brake surfaces using numerous perforations or slots to reduce airframe buffeting.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.