In quantum field theory a product of quantum fields, or equivalently their creation and annihilation operators, is usually said to be normal ordered (also called Wick order) when all creation operators are to the left of all annihilation operators in the product. The process of putting a product into normal order is called normal ordering (also called Wick ordering). The terms antinormal order and antinormal ordering are analogously defined, where the annihilation operators are placed to the left of the creation operators.
Normal ordering of a product quantum fields or creation and annihilation operators can also be defined in many other ways. Which definition is most appropriate depends on the expectation values needed for a given calculation. Most of this article uses the most common definition of normal ordering as given above, which is appropriate when taking expectation values using the vacuum state of the creation and annihilation operators.
The process of normal ordering is particularly important for a quantum mechanical Hamiltonian. When quantizing a classical Hamiltonian there is some freedom when choosing the operator order, and these choices lead to differences in the ground state energy.
If denotes an arbitrary product of creation and/or annihilation operators (or equivalently, quantum fields), then the normal ordered form of is denoted by .
An alternative notation is .
Note that normal ordering is a concept that only makes sense for products of operators. Attempting to apply normal ordering to a sum of operators is not useful as normal ordering is not a linear operation.
Bosons are particles which satisfy Bose–Einstein statistics. We will now examine the normal ordering of bosonic creation and annihilation operator products.
If we start with only one type of boson there are two operators of interest:
the boson's creation operator.
the boson's annihilation operator.
These satisfy the commutator relationship
where denotes the commutator. We may rewrite the last one as:
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Introduction to the path integral formulation of quantum mechanics. Derivation of the perturbation expansion of Green's functions in terms of Feynman diagrams. Several applications will be presented,