Concept

Downregulation and upregulation

Summary
In biochemistry, in the biological context of organisms' regulation of gene expression and production of gene products, downregulation is the process by which a cell decreases the production and quantities of its cellular components, such as RNA and proteins, in response to an external stimulus. The complementary process that involves increase in quantities of cellular components is called upregulation. An example of downregulation is the cellular decrease in the expression of a specific receptor in response to its increased activation by a molecule, such as a hormone or neurotransmitter, which reduces the cell's sensitivity to the molecule. This is an example of a locally acting (negative feedback) mechanism. An example of upregulation is the response of liver cells exposed to such xenobiotic molecules as dioxin. In this situation, the cells increase their production of cytochrome P450 enzymes, which in turn increases degradation of these dioxin molecules. Downregulation or upregulation of an RNA or protein may also arise by an epigenetic alteration. Such an epigenetic alteration can cause expression of the RNA or protein to no longer respond to an external stimulus. This occurs, for instance, during drug addiction or progression to cancer. All living cells have the ability to receive and process signals that originate outside their membranes, which they do by means of proteins called receptors, often located at the cell's surface imbedded in the plasma membrane. When such signals interact with a receptor, they effectively direct the cell to do something, such as dividing, dying, or allowing substances to be created, or to enter or exit the cell. A cell's ability to respond to a chemical message depends on the presence of receptors tuned to that message. The more receptors a cell has that are tuned to the message, the more the cell will respond to it. Receptors are created, or expressed, from instructions in the DNA of the cell, and they can be increased, or upregulated, when the signal is weak, or decreased, or downregulated, when it is strong.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (37)