Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them.
Specifically, each logical system produces a set of queries expressible in it. The queries – when restricted to finite structures – correspond to the computational problems of traditional complexity theory.
The first main result of descriptive complexity was Fagin's theorem, shown by Ronald Fagin in 1974. It established that NP is precisely the set of languages expressible by sentences of existential second-order logic; that is, second-order logic excluding universal quantification over relations, functions, and subsets. Many other classes were later characterized in such a manner.
When we use the logic formalism to describe a computational problem, the input is a finite structure, and the elements of that structure are the domain of discourse. Usually the input is either a string (of bits or over an alphabet) and the elements of the logical structure represent positions of the string, or the input is a graph and the elements of the logical structure represent its vertices. The length of the input will be measured by the size of the respective structure.
Whatever the structure is, we can assume that there are relations that can be tested, for example " is true if and only if there is an edge from x to y" (in case of the structure being a graph), or " is true if and only if the nth letter of the string is 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set to itself is the fixed point which is less than each other fixed point, according to the order of the poset. A function need not have a least fixed point, but if it does then the least fixed point is unique. With the usual order on the real numbers, the least fixed point of the real function f(x) = x2 is x = 0 (since the only other fixed point is 1 and 0 < 1).
Fagin's theorem is the oldest result of descriptive complexity theory, a branch of computational complexity theory that characterizes complexity classes in terms of logic-based descriptions of their problems rather than by the behavior of algorithms for solving those problems. The theorem states that the set of all properties expressible in existential second-order logic is precisely the complexity class NP. It was proven by Ronald Fagin in 1973 in his doctoral thesis, and appears in his 1974 paper.
In mathematical logic, fixed-point logics are extensions of classical predicate logic that have been introduced to express recursion. Their development has been motivated by descriptive complexity theory and their relationship to database query languages, in particular to Datalog. Least fixed-point logic was first studied systematically by Yiannis N. Moschovakis in 1974, and it was introduced to computer scientists in 1979, when Alfred Aho and Jeffrey Ullman suggested fixed-point logic as an expressive database query language.
This course constitutes an introduction to theory of computation. It discusses the basic theoretical models of computing (finite automata, Turing machine), as well as, provides a solid and mathematica
In this course we will define rigorous mathematical models for computing on large datasets, cover main algorithmic techniques that have been developed for sublinear (e.g. faster than linear time) data
Probabilistic proof systems (eg PCPs and IPs) have had a tremendous impact on theoretical computer science, as well as on real-world secure systems. They underlie delegation of computation protocols a
In this paper we will consider distributed Linear-Quadratic Optimal Control Problems dealing with Advection-Diffusion PDEs for high values of the Peclet number. In this situation, computational instabilities occur, both for steady and unsteady cases. A Str ...
Self-attention mechanisms and non-local blocks have become crucial building blocks for state-of-the-art neural architectures thanks to their unparalleled ability in capturing long-range dependencies in the input. However their cost is quadratic with the nu ...
Los Alamitos2023
, ,
Given a sequence of functions f1,…,fn with fi:D↦R, finite-sum minimization seeks a point x⋆∈D minimizing ∑j=1nfj(x)/n. In this work, we propose a key twist into the finite-sum minimizat ...