Concept

Descriptive complexity theory

Summary
Descriptive complexity is a branch of computational complexity theory and of finite model theory that characterizes complexity classes by the type of logic needed to express the languages in them. For example, PH, the union of all complexity classes in the polynomial hierarchy, is precisely the class of languages expressible by statements of second-order logic. This connection between complexity and the logic of finite structures allows results to be transferred easily from one area to the other, facilitating new proof methods and providing additional evidence that the main complexity classes are somehow "natural" and not tied to the specific abstract machines used to define them. Specifically, each logical system produces a set of queries expressible in it. The queries – when restricted to finite structures – correspond to the computational problems of traditional complexity theory. The first main result of descriptive complexity was Fagin's theorem, shown by Ronald Fagin in 1974. It established that NP is precisely the set of languages expressible by sentences of existential second-order logic; that is, second-order logic excluding universal quantification over relations, functions, and subsets. Many other classes were later characterized in such a manner. When we use the logic formalism to describe a computational problem, the input is a finite structure, and the elements of that structure are the domain of discourse. Usually the input is either a string (of bits or over an alphabet) and the elements of the logical structure represent positions of the string, or the input is a graph and the elements of the logical structure represent its vertices. The length of the input will be measured by the size of the respective structure. Whatever the structure is, we can assume that there are relations that can be tested, for example " is true if and only if there is an edge from x to y" (in case of the structure being a graph), or " is true if and only if the nth letter of the string is 1.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.