Well-ordering theoremIn mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also ). Ernst Zermelo introduced the axiom of choice as an "unobjectionable logical principle" to prove the well-ordering theorem.
Axiom of limitation of sizeIn set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class.
Continuum (set theory)In the mathematical field of set theory, the continuum means the real numbers, or the corresponding (infinite) cardinal number, denoted by . Georg Cantor proved that the cardinality is larger than the smallest infinity, namely, . He also proved that is equal to , the cardinality of the power set of the natural numbers. The cardinality of the continuum is the size of the set of real numbers. The continuum hypothesis is sometimes stated by saying that no cardinality lies between that of the continuum and that of the natural numbers, , or alternatively, that .
Space-filling curveIn mathematical analysis, a space-filling curve is a curve whose range reaches every point in a higher dimensional region, typically the unit square (or more generally an n-dimensional unit hypercube). Because Giuseppe Peano (1858–1932) was the first to discover one, space-filling curves in the 2-dimensional plane are sometimes called Peano curves, but that phrase also refers to the Peano curve, the specific example of a space-filling curve found by Peano.
Dedekind cutIn mathematics, Dedekind cuts, named after German mathematician Richard Dedekind but previously considered by Joseph Bertrand, are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of the rational numbers into two sets A and B, such that all elements of A are less than all elements of B, and A contains no greatest element. The set B may or may not have a smallest element among the rationals. If B has a smallest element among the rationals, the cut corresponds to that rational.
Adolf HurwitzAdolf Hurwitz (ˈaːdɔlf ˈhʊʁvɪts; 26 March 1859 – 18 November 1919) was a German mathematician who worked on algebra, analysis, geometry and number theory. He was born in Hildesheim, then part of the Kingdom of Hanover, to a Jewish family and died in Zürich, in Switzerland. His father Salomon Hurwitz, a merchant, was not wealthy. Hurwitz's mother, Elise Wertheimer, died when he was three years old.
Derived set (mathematics)In mathematics, more specifically in point-set topology, the derived set of a subset of a topological space is the set of all limit points of It is usually denoted by The concept was first introduced by Georg Cantor in 1872 and he developed set theory in large part to study derived sets on the real line. The derived set of a subset of a topological space denoted by is the set of all points that are limit points of that is, points such that every neighbourhood of contains a point of other than itself.
List of mathematical jargonThe language of mathematics has a vast vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject. Jargon often appears in lectures, and sometimes in print, as informal shorthand for rigorous arguments or precise ideas. Much of this is common English, but with a specific non-obvious meaning when used in a mathematical sense. Some phrases, like "in general", appear below in more than one section.
Crelle's JournalCrelle's Journal, or just Crelle, is the common name for a mathematics journal, the Journal für die reine und angewandte Mathematik (in English: Journal for Pure and Applied Mathematics). The journal was founded by August Leopold Crelle (Berlin) in 1826 and edited by him until his death in 1855. It was one of the first major mathematical journals that was not a proceedings of an academy. It has published many notable papers, including works of Niels Henrik Abel, Georg Cantor, Gotthold Eisenstein, Carl Friedrich Gauss and Otto Hesse.