Concept

Manifold decomposition

In topology, a branch of mathematics, a manifold M may be decomposed or split by writing M as a combination of smaller pieces. When doing so, one must specify both what those pieces are and how they are put together to form M. Manifold decomposition works in two directions: one can start with the smaller pieces and build up a manifold, or start with a large manifold and decompose it. The latter has proven a very useful way to study manifolds: without tools like decomposition, it is sometimes very hard to understand a manifold. In particular, it has been useful in attempts to classify 3-manifolds and also in proving the higher-dimensional Poincaré conjecture. The table below is a summary of the various manifold-decomposition techniques. The column labeled "M" indicates what kind of manifold can be decomposed; the column labeled "How it is decomposed" indicates how, starting with a manifold, one can decompose it into smaller pieces; the column labeled "The pieces" indicates what the pieces can be; and the column labeled "How they are combined" indicates how the smaller pieces are combined to make the large manifold.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.