François MaréchalPh D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
Daniel FavratDaniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
John Richard ThomeJohn R. Thome is Professor of Heat and Mass Transfer at the Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland since 1998, where his primary interests of research are two-phase flow and heat transfer, covering both macro-scale and micro-scale heat transfer and enhanced heat transfer. He directs the Laboratory of Heat and Mass Transfer (LTCM) at the EPFL with a research staff of about 18-20 and is also Director of the Doctoral School in Energy. He received his Ph.D. at Oxford University, England in 1978. He is the author of four books: Enhanced Boiling Heat Transfer (1990), Convective Boiling and Condensation, 3rd Edition (1994), Wolverine Engineering Databook III (2004) and Nucleate Boiling on Micro-Structured Surfaces (2008). He received the ASME Heat Transfer Division's Best Paper Award in 1998 for a 3-part paper on two-phase flow and flow boiling heat transfer published in the Journal of Heat Transfer. He has received the J&E Hall Gold Medal from the U.K. Institute of Refrigeration in February, 2008 for his extensive research contributions on refrigeration heat transfer and more recently the 2010 ASME Heat Transfer Memorial Award. He has published widely on the fundamental aspects of microscale and macroscale two-phase flow and heat transfer and on enhanced boiling and condensation heat transfer.
François AvellanProf. François Avellan, director of the EPFL Laboratory for Hydraulic Machines, graduated in Hydraulic Engineering from Ecole nationale supérieure d'hydraulique, Institut national polytechnique de Grenoble, France, in 1977 and, in 1980, got his doctoral degree in engineering from University of Aix-Marseille II, France. Research associate at EPFL in 1980, he is director of the EPFL Laboratory for Hydraulic Machines since 1994 and, in 2003, was appointed Ordinary Professor in Hydraulic Machinery. Supervising 37 EPFL doctoral theses, he was distinguished by SHF, Société hydrotechnique de France, awarding him the "Grand Prix 2010 de l'hydrotechnique". His main research domains of interests are hydrodynamics of turbine, pump and pump-turbines including cavitation, hydro-acoustics, design, performance and operation assessments of hydraulic machines. Prof. Avellan was Chairman of the IAHR Section on Hydraulic Machinery and Systems from 2002 to 2012. He has conducted successfully several Swiss and international collaborative research projects, involving key hydropower operators and suppliers, such as:
-
Coordination for the FP7 European project n° 608532 "HYPERBOLE: HYdropower plants PERformance and flexiBle Operation towards Lean integration of new renewable Energies" (2013-2017);
-
Deputy Head of the Swiss Competence Center for Energy Research – Supply of Electricity (SCCER-SoE) to carry out innovative and sustainable research in the areas of geo-energy and hydropower for phase I (2013-2016) and Phase II (2017, 2010) to be approved.
-
EUREKA European research projects: N° 4150 and N° 3246, "HYDRODYNA, Harnessing the dynamic behavior of pump-turbines", (2003-2011), N° 1605, "FLINDT, Flow Investigation in Draft Tubes", http://flindt.epfl.ch/, (1997-2002). N° 2418, "SCAPIN, Stability of Operation of Francis turbines, prediction and modeling";
-
Swiss KTI/CTI research projects with GE Renewable Energy (anc. ALSTOM Hydro), Birr, ANDRITZ Hydro, Kriens, FMV, Sion, Groupe E, Granges-Paccot, Power Vision engineering, Ecublens and SULZER Pumps, Winterthur.
-
ETH Domain, HYDRONET Project for the Competence Center Energy and Mobility, PSI Villingen.
Furthermore, he is involved in scientific expertise and independent contractual experimental validations of turbines and pump turbines performances for the main hydropower plants in the world. In recognition for his work as Convenor of the TC4 working group of experts in editing the IEC 60193 standard he received the "IEC 1906 Award" from the International Electrotechnical Commission. Francesco MondadaDr. Mondada received his M.Sc. in micro-engineering in 1991 and his Doctoral degree in 1997 at EPFL. During his thesis he co-founded the company K-Team, being both CEO and president of the company for about 5 years. He is one of the three main developers of the Khepera robot, considered as a standard in bio-inspired robotics and used by more than 1,000 universities and research centers worldwide. Fully back in research in 2000 and after a short period at CALTECH, he participated to the SWARM-BOTS project as the main developer of the s-bot robot platform, which was ranked on position 39 in the list of The 50 Best Robots Ever (fiction or real) by the Wired Journal in 2006. The SWARM-BOTS project was selected as FET-IST success story by the EU commission. He is author of more than 100 papers in the field of bio-inspired robotics and system level robot design. He is co-editor of several international conference proceedings. In November 2005 he received the EPFL Latsis University prize for his contributions to bio-inspired robotics. In 2011 he received the "Crédit Suisse Award for Best Teaching" from EPFL and in 2012 the "polysphère" award from the students as best teacher in the school of engineering. His interests include the development of innovative mechatronic solutions for mobile and modular robots, the creation of know-how for future embedded applications, and making robot platforms more accessible for education, research, and industrial development.
Jürg Alexander SchiffmannAfter obtaining his diploma in mechanical engineering from EPFL in 1999 he co-founded a start-up company dedicated to the design of gas bearing supported rotors. In 2005 he joined Fischer Engineering Solutions where he led the development of small-scale, gas bearing supported high-speed turbomachinery for fuel cell air supplies and for domestic scale heat pumps. In parallel he worked on his PhD, which he obtained from EPFL in 2008 and for which he was awarded the SwissElectric Research Award. He then joined the Gas Turbine Lab at MIT as a postdoctoral associate where he worked on foil bearings and on the experimental investigation of radial diffusers. In 2013 he was nominated assistant professor at the Ecole Polytechnique Fédérale de Lausanne where he founds the Laboratory for Applied Mechanical Design. His current research interest are in gas lubricated bearings, in aerodynamics of small-scale compressors and turbines and in automated design and optimization methodologies.