Summary
The fractional quantum Hall effect (FQHE) is a physical phenomenon in which the Hall conductance of 2-dimensional (2D) electrons shows precisely quantized plateaus at fractional values of . It is a property of a collective state in which electrons bind magnetic flux lines to make new quasiparticles, and excitations have a fractional elementary charge and possibly also fractional statistics. The 1998 Nobel Prize in Physics was awarded to Robert Laughlin, Horst Störmer, and Daniel Tsui "for their discovery of a new form of quantum fluid with fractionally charged excitations" The microscopic origin of the FQHE is a major research topic in condensed matter physics. The fractional quantum Hall effect (FQHE) is a collective behavior in a 2D system of electrons. In particular magnetic fields, the electron gas condenses into a remarkable liquid state, which is very delicate, requiring high quality material with a low carrier concentration, and extremely low temperatures. As in the integer quantum Hall effect, the Hall resistance undergoes certain quantum Hall transitions to form a series of plateaus. Each particular value of the magnetic field corresponds to a filling factor (the ratio of electrons to magnetic flux quanta) where p and q are integers with no common factors. Here q turns out to be an odd number with the exception of two filling factors 5/2 and 7/2. The principal series of such fractions are and Fractionally charged quasiparticles are neither bosons nor fermions and exhibit anyonic statistics. The fractional quantum Hall effect continues to be influential in theories about topological order. Certain fractional quantum Hall phases appear to have the right properties for building a topological quantum computer. The FQHE was experimentally discovered in 1982 by Daniel Tsui and Horst Störmer, in experiments performed on gallium arsenide heterostructures developed by Arthur Gossard. There were several major steps in the theory of the FQHE. Laughlin states and fractionally-charged quasiparticles: this theory, proposed by Robert B.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
PHYS-756: Lectures on twisted bilayer graphene
Twisted Bilayer Graphene (TBG) is a change of paradigm in condensed matter: with flat topologic bands, it provides a platform for unconventional superconductivity, correlated insulation, Plankian meta
PHYS-462: Quantum transport in mesoscopic systems
This course will focus on the electron transport in semiconductors, with emphasis on the mesoscopic systems. The aim is to understand the transport of electrons in low dimensional systems, where even
PHYS-638: Some aspects of topology in condensed matter physics
Some topics covered in this class are: The Index theorem, solitons, topological band insulators/superconductors, bulk-edge correpondence, quantum anomalies, quantum pumping, symmetry protected topolog
Show more