In mathematical logic, a formula is said to be absolute to some class of structures (also called models), if it has the same truth value in each of the members of that class. One can also speak of absoluteness of a formula between two structures, if it is absolute to some class which contains both of them.. Theorems about absoluteness typically establish relationships between the absoluteness of formulas and their syntactic form.
There are two weaker forms of partial absoluteness. If the truth of a formula in each substructure N of a structure M follows from its truth in M, the formula is downward absolute. If the truth of a formula in a structure N implies its truth in each structure M extending N, the formula is upward absolute.
Issues of absoluteness are particularly important in set theory and model theory, fields where multiple structures are considered simultaneously. In model theory, several basic results and definitions are motivated by absoluteness. In set theory, the issue of which properties of sets are absolute is well studied. The Shoenfield absoluteness theorem, due to Joseph Shoenfield (1961), establishes the absoluteness of a large class of formulas between a model of set theory and its constructible universe, with important methodological consequences. The absoluteness of large cardinal axioms is also studied, with positive and negative results known.
In model theory, there are several general results and definitions related to absoluteness. A fundamental example of downward absoluteness is that universal sentences (those with only universal quantifiers) that are true in a structure are also true in every substructure of the original structure. Conversely, existential sentences are upward absolute from a structure to any structure containing it.
Two structures are defined to be elementarily equivalent if they agree about the truth value of all sentences in their shared language, that is, if all sentences in their language are absolute between the two structures.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals (first, second, nth, etc.) aimed to extend enumeration to infinite sets. A finite set can be enumerated by successively labeling each element with the least natural number that has not been previously used. To extend this process to various infinite sets, ordinal numbers are defined more generally as linearly ordered labels that include the natural numbers and have the property that every set of ordinals has a least element (this is needed for giving a meaning to "the least unused element").
In mathematics, in set theory, the constructible universe (or Gödel's constructible universe), denoted by , is a particular class of sets that can be described entirely in terms of simpler sets. is the union of the constructible hierarchy . It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis".
In the mathematical discipline of set theory, forcing is a technique for proving consistency and independence results. Intuitively, forcing can be thought of as a technique to expand the set theoretical universe to a larger universe by introducing a new "generic" object . Forcing was first used by Paul Cohen in 1963, to prove the independence of the axiom of choice and the continuum hypothesis from Zermelo–Fraenkel set theory.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Branche des mathématiques en lien avec le fondement des mathématiques et l'informatique théorique. Le cours est centré sur la logique du 1er ordre et l'articulation entre syntaxe et sémantique.