In recursion theory, hyperarithmetic theory is a generalization of Turing computability. It has close connections with definability in second-order arithmetic and with weak systems of set theory such as Kripke–Platek set theory. It is an important tool in effective descriptive set theory.
The central focus of hyperarithmetic theory is the sets of natural numbers known as hyperarithmetic sets. There are three equivalent ways of defining this class of sets; the study of the relationships between these different definitions is one motivation for the study of hyperarithmetical theory.
The first definition of the hyperarithmetic sets uses the analytical hierarchy.
A set of natural numbers is classified at level of this hierarchy if it is definable by a formula of second-order arithmetic with only existential set quantifiers and no other set quantifiers. A set is classified at level of the analytical hierarchy if it is definable by a formula of second-order arithmetic with only universal set quantifiers and no other set quantifiers. A set is if it is both and . The hyperarithmetical sets are exactly the sets.
The definition of hyperarithmetical sets as does not directly depend on computability results. A second, equivalent, definition shows that the hyperarithmetical sets can be defined using infinitely iterated Turing jumps. This second definition also shows that the hyperarithmetical sets can be classified into a hierarchy extending the arithmetical hierarchy; the hyperarithmetical sets are exactly the sets that are assigned a rank in this hierarchy.
Each level of the hyperarithmetical hierarchy is indexed by a countable ordinal number (ordinal), but not all countable ordinals correspond to a level of the hierarchy. The ordinals used by the hierarchy are those with an ordinal notation, which is a concrete, effective description of the ordinal.
An ordinal notation is an effective description of a countable ordinal by a natural number. A system of ordinal notations is required in order to define the hyperarithmetic hierarchy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computability theory, the Turing jump or Turing jump operator, named for Alan Turing, is an operation that assigns to each decision problem X a successively harder decision problem X′ with the property that X′ is not decidable by an oracle machine with an oracle for X. The operator is called a jump operator because it increases the Turing degree of the problem X. That is, the problem X′ is not Turing-reducible to X. Post's theorem establishes a relationship between the Turing jump operator and the arithmetical hierarchy of sets of natural numbers.
Effective descriptive set theory is the branch of descriptive set theory dealing with sets of reals having lightface definitions; that is, definitions that do not require an arbitrary real parameter (Moschovakis 1980). Thus effective descriptive set theory combines descriptive set theory with recursion theory. Effective Polish space An effective Polish space is a complete separable metric space that has a computable presentation. Such spaces are studied in both effective descriptive set theory and in constructive analysis.
In mathematics, specifically computability and set theory, an ordinal is said to be computable or recursive if there is a computable well-ordering of a computable subset of the natural numbers having the order type . It is easy to check that is computable. The successor of a computable ordinal is computable, and the set of all computable ordinals is closed downwards. The supremum of all computable ordinals is called the Church–Kleene ordinal, the first nonrecursive ordinal, and denoted by .
Explores the theoretical properties and practical power of Recurrent Neural Networks, including their relationship to state machines and Turing completeness.