Summary
In computing, a non-maskable interrupt (NMI) is a hardware interrupt that standard interrupt-masking techniques in the system cannot ignore. It typically occurs to signal attention for non-recoverable hardware errors. Some NMIs may be masked, but only by using proprietary methods specific to the particular NMI. An NMI is often used when response time is critical or when an interrupt should never be disabled during normal system operation. Such uses include reporting non-recoverable hardware errors, system debugging and profiling, and handling of special cases like system resets. Modern computer architectures typically use NMIs to handle non-recoverable errors which need immediate attention. Therefore, such interrupts should not be masked in the normal operation of the system. These errors include non-recoverable internal system chipset errors, corruption in system memory such as parity and ECC errors, and data corruption detected on system and peripheral buses. On some systems, a computer user can trigger an NMI through hardware and software debugging interfaces and system reset buttons. Programmers typically use debugging NMIs to diagnose and fix faulty code. In such cases, an NMI can execute an interrupt handler that transfers control to a special monitor program. From this program, a developer can inspect the machine's memory and examine the internal state of the program at the instant of its interruption. This also allows the debugging or diagnosing of computers which appear hung. In older architectures, NMIs were used for interrupts which were typically never disabled because of the required response time. They were hidden signals. Examples include the floppy disk controller on the Amstrad PCW, the 8087 coprocessor on the x86 when used in the IBM PC or its compatibles (even though Intel recommended connecting it to a normal interrupt), and the Low Battery signal on the HP 95LX. In the original IBM PC, an NMI was triggered if a parity error was detected in system memory, or reported by an external device.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.