The security of cryptographic systems depends on some secret data that is known to authorized persons but unknown and unpredictable to others. To achieve this unpredictability, some randomization is typically employed. Modern cryptographic protocols often require frequent generation of random quantities. Cryptographic attacks that subvert or exploit weaknesses in this process are known as random number generator attacks.
A high quality random number generation (RNG) process is almost always required for security, and lack of quality generally provides attack vulnerabilities and so leads to lack of security, even to complete compromise, in cryptographic systems. The RNG process is particularly attractive to attackers because it is typically a single isolated hardware or software component easy to locate. If the attacker can substitute pseudo-random bits generated in a way they can predict, security is totally compromised, yet generally undetectable by any upstream test of the bits. Furthermore, such attacks require only a single access to the system that is being compromised. No data need be sent back in contrast to, say, a computer virus that steals keys and then e-mails them to some drop point.
Humans generally do poorly at generating random quantities. Magicians, professional gamblers and con artists depend on the predictability of human behavior. In World War II German code clerks were instructed to select three letters at random to be the initial rotor setting for each Enigma machine message. Instead some chose predictable values like their own or a girlfriend's initials, greatly aiding Allied breaking of these encryption systems. Another example is the often predictable ways computer users choose passwords (see password cracking).
Nevertheless, in the specific case of playing mixed strategy games, use of human gameplay entropy for randomness generation was studied by Ran Halprin and Moni Naor.
Just as with other components of a cryptosystem, a software random number generator should be designed to resist certain attacks.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
The student who follows this course will get acquainted with computational tools used to analyze systems with uncertainty arising in engineering, physics, chemistry, and economics. Focus will be on s
Random number generation is a process by which, often by means of a random number generator (RNG), a sequence of numbers or symbols that cannot be reasonably predicted better than by random chance is generated. This means that the particular outcome sequence will contain some patterns detectable in hindsight but unpredictable to foresight. True random number generators can be hardware random-number generators (HRNGs), wherein each generation is a function of the current value of a physical environment's attribute that is constantly changing in a manner that is practically impossible to model.
In cryptography, the one-time pad (OTP) is an encryption technique that cannot be cracked, but requires the use of a single-use pre-shared key that is larger than or equal to the size of the message being sent. In this technique, a plaintext is paired with a random secret key (also referred to as a one-time pad). Then, each bit or character of the plaintext is encrypted by combining it with the corresponding bit or character from the pad using modular addition.
Explores the challenges of generating random numbers and secret key generation in secure communication.
Explores quantum random number generation, discussing the challenges and implementations of generating good randomness using quantum devices.
Covers basic statistics concepts, confidence intervals, t distribution, and experimental study strategies.
The intrinsic random amplitude and phase modulation of 40 distinct lines of a microresonator frequency comb operated in the modulation instability regime are used to realize massively parallel random-modulation continuous-wave light detection and ranging, ...
Modern digital connectivity has necessitated the creation of robust methods for securely storing and transferring data. At the heart of all security infrastructure is the random number generator (RNG). While random numbers find use in a variety of applicat ...
The field of biometrics, and especially face recognition, has seen a wide-spread adoption the last few years, from access control on personal devices such as phones and laptops, to automated border controls such as in airports. The stakes are increasingly ...