Summary
Cis–trans isomerism, also known as geometric isomerism or configurational isomerism, is a term used in chemistry that concerns the spatial arrangement of atoms within molecules. The prefixes "cis" and "trans" are from Latin: "this side of" and "the other side of", respectively. In the context of chemistry, cis indicates that the functional groups (substituents) are on the same side of some plane, while trans conveys that they are on opposing (transverse) sides. Cis–trans isomers are stereoisomers, that is, pairs of molecules which have the same formula but whose functional groups are in different orientations in three-dimensional space. Cis-trans notation does not always correspond to E–Z isomerism, which is an absolute stereochemical description. In general, cis–trans stereoisomers contain double bonds that do not rotate, or they may contain ring structures, where the rotation of bonds is restricted or prevented. Cis and trans isomers occur both in organic molecules and in inorganic coordination complexes. Cis and trans descriptors are not used for cases of conformational isomerism where the two geometric forms easily interconvert, such as most open-chain single-bonded structures; instead, the terms "syn" and "anti" are used. The term "geometric isomerism" is considered by IUPAC to be an obsolete synonym of "cis–trans isomerism". When the substituent groups are oriented in the same direction, the diastereomer is referred to as cis, whereas, when the substituents are oriented in opposing directions, the diastereomer is referred to as trans. An example of a small hydrocarbon displaying cis–trans isomerism is but-2-ene. Alicyclic compounds can also display cis–trans isomerism. As an example of a geometric isomer due to a ring structure, consider 1,2-dichlorocyclohexane: Cis and trans isomers often have different physical properties. Differences between isomers, in general, arise from the differences in the shape of the molecule or the overall dipole moment.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (10)
Related concepts (34)
Cis–trans isomerism
Cis–trans isomerism, also known as geometric isomerism or configurational isomerism, is a term used in chemistry that concerns the spatial arrangement of atoms within molecules. The prefixes "cis" and "trans" are from Latin: "this side of" and "the other side of", respectively. In the context of chemistry, cis indicates that the functional groups (substituents) are on the same side of some plane, while trans conveys that they are on opposing (transverse) sides.
Isomer
In chemistry, isomers are molecules or polyatomic ions with identical molecular formula – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism refers to the existence or possibility of isomers. Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural or constitutional isomerism, in which bonds between the atoms differ; and stereoisomerism or spatial isomerism, in which the bonds are the same but the relative positions of the atoms differ.
Chirality (chemistry)
In chemistry, a molecule or ion is called chiral (ˈkaɪrəl) if it cannot be superposed on its by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality (kaɪˈrælɪti). The terms are derived from Ancient Greek χείρ (cheir) 'hand'; which is the canonical example of an object with this property. A chiral molecule or ion exists in two stereoisomers that are mirror images of each other, called enantiomers; they are often distinguished as either "right-handed" or "left-handed" by their absolute configuration or some other criterion.
Show more
Related courses (14)
CH-222: Coordination chemistry
Fundamental knowledge of coordination compounds.
CH-120: Advanced general chemistry II
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
CH-610: Inorganic chemistry "Fundamentals and properties"
To present and discuss important recent contributions in the field of inorganic chemistry with an emphasis on fundamental aspects and properties.Literature seminars based on selected publications,eman
Show more
Related lectures (62)
Coordination Isomers: Nomenclature and Isomers
Covers the nomenclature and isomers in coordination chemistry, focusing on naming conventions and different types of isomerism.
Molecular Chirality: Rules and Isomerism
Explores molecular chirality rules, priority orders, Z and E isomerism, and energy barriers in rotational isomerism.
Goldstone Bosons: Higgs Mechanism
Explores Goldstone bosons and the Higgs mechanism, revealing how spontaneous symmetry breaking generates mass for gauge bosons.
Show more