Related people (35)
Maher Kayal
Maher Kayal received M.S. and Ph.D degrees in electrical engineering from the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) in 1983 and 1989 respectively. He has been with the Electronics laboratories of the Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) since 1990, where he is currently a professor and director of the “Energy Management and Sustainability" section. He has published many scientific papers, coauthor of three text books dedicated to mixed-mode CMOS design and he holds eleven patents. His technical contributions have been in the area of analog and Mixed-signal circuits design including highly linear and tunable sensors microsystems, signal processing and green energy management. Prizes and Honors • Electronics Letters journal Premium Award 2013, • Outstanding Paper Award? IEEE Mixdes 2013 • Basil Papadias paper Award, IEEE Powertech 2013 • Best Paper Awards, Mixdes 2013 • Best Paper Awards, ICCAS 2012 • Outstanding Paper Award- IEEE Mixdes 2012. • Poland Section IEEE ED Chapter special award in 2011. • Credit Suisse Award for Best Teaching- 2009. • The William M. Portnoy Award at the Energy Conversion Congress and Exposition , California Sept 2009. • Best Paper Award - IEEE-Mixdes 2009. • High Quality Paper - IEEE Power Tech Conference June 2009. • Best Paper Award - IEEE-Mixdes 2007. • Best Paper Award - IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics - 2006. • Best Application Specific Integrated Circuit at the International European Design and Test Conference ED&TC - 1997. • Ascom Award for the Best Work in Telecommunication Fields – 1990. Publications Books. Books: • Methodology for the Digital Calibration of Analog Circuits and Systems, Marc Pastre & Maher Kayal. Springer Publisher- (ISBN 1-4020-4252-3)-2006. • Structured Analog CMOS Design, Danica Stefanovic & Maher Kayal. Springer Publisher-(ISBN 978-1-4020-8572-7)-2008. • Linear CMOS RF Amplifiers for Wireless Applications, Maher Kayal, Springer Publisher. (ISBN 978-90-481-9360-8)-2010. • Coeditor of Microelectronics Education Kluwer Academic Publishers. (ISBN 1-4020-2072-4). -2004.
Karl Aberer
Karl Aberer received his PhD in mathematics in 1991 from the ETH Zürich. From 1991 to 1992 he was postdoctoral fellow at the International Computer Science Institute (ICSI) at the University of California, Berkeley. In 1992, he joined the Integrated Publication and Information Systems institute (IPSI) of GMD in Germany, where he was leading the research division Open Adaptive Information Management Systems. In 2000 he joined EPFL as full professor. Since 2005 he is the director of the Swiss National Research Center for Mobile Information and Communication Systems ( NCCR-MICS, www.mics.ch ). He is member of the editorial boards of VLDB Journal, ACM Transaction on Autonomous and Adaptive Systems and World Wide Web Journal. He has been consulting for the Swiss government in research and science policy as a member of the Swiss Research and Technology Council ( SWTR ) from 2003 - 2011.
Jeffrey Huang
Jeffrey Huang is the Director of the Institute of Architecture at EPFL (starting May 1, 2020), that comprises 25 laboratories and groups. He is also the Head of the Media x Design Laboratory and a Full Professor in Architecture and Computer Science, at the Faculty of Computer and Communication Sciences (IC), and at the Faculty of Architecture, Civil and Environmental Engineering (ENAC). He holds a DiplArch from ETH Zurich, and Masters and Doctoral Degrees from Harvard University, where he was awarded the Gerald McCue medal for academic excellence. He started his academic career as a researcher at MIT’s Sloan School of Management (Center for Coordination Sciences). In 1998 he returned to Harvard as an Assistant Professor of Architecture and was promoted to Associate Professor in 2001. In 2006 he was named Full Professor at EPFL in Switzerland where he holds joint professorships at I&C and ENAC, and heads the Media x Design Lab. He was also a Visiting Professor at Tsinghua University, a Visiting Fellow at Stanford University’s d.school, a Honorary Visiting Professor at the University of Sheffield, and a Berkman Fellow and Faculty Associate at Harvard University (Berkman Klein Center for Internet & Society). Professor Huang’s research examines the convergence of physical and digital architecture. His recent work investigates new artificial design paradigms (design decoding and encoding), theories of experience design, and the application of algorithmic urbanism in Chinese cities. His current teaching examines the possible role of artificial intelligence in architecture (see MxD studios). In collaboration with Muriel Waldvogel, he heads Convergeo, an award-winning, international strategic and experience design firm. From 2014-2017, while on leave from EPFL, he led the creation of a ground-breaking, new school of architecture in Singapore, as the Head of the Architecture and Sustainable Design Pillar at the Singapore University of Technology and Design (SUTD), established in collaboration with MIT.
Jean-Louis Scartezzini
Director of EPFL Solar Energy and Building Physics Laboratory (1994-present); Founder & Director of ENAC Institute of Infrastructures, Resources and Environment (2002-2009); Founder & Director of EPFL Doctoral Program in Environment (2002-2009); Co-Director of EPFL Institute of Building Technology (1994-1997); Associate Professor of Building Physics at EPFL (1994-1997); Associate Professor of Building Physics at University of Geneva (1990-1997); Group Leader & Research Fellow at the EPFL Solar Energy Research Group (1981-1989); Research Fellow at the Applied Geophysics Institute of University of Lausanne (1980-1981).
Marilyne Andersen
Marilyne Andersen is a Full Professor of Sustainable Construction Technologies and heads the Laboratory of Integrated Performance in Design (LIPID) that she launched in the Fall of 2010. She was Dean of the School of Architecture, Civil and Environmental Engineering (ENAC) at EPFL from 2013 to 2018 and is the Academic Director of the Smart Living Lab in Fribourg. She also co-leads the Student Kreativity and Innovation Laboratory (SKIL) at ENAC. Before joining EPFL as a faculty, she was an Assistant Professor then Associate Professor tenure-track in the Building Technology Group of the MIT School of Architecture and Planning and the Head of the MIT Daylighting Lab that she founded in 2004. She has also been Invited Professor at the Singapore University of Technology and Design in 2019. Marilyne Andersen owns a Master of Science in Physics and specialized in daylighting through her PhD in Building Physics at EPFL in the Solar Energy and Building Physics Laboratory (LESO) and as a Visiting Scholar in the Building Technologies Department of the Lawrence Berkeley National Laboratory in California. Her research lies at the interface between science, engineering and architectural design with a dedicated emphasis on the impact of daylight on building occupants. Focused on questions of comfort, perception and health and their implications on energy considerations, these research efforts aim towards a deeper integration of the design process with daylighting performance and indoor comfort, by reaching out to various fields of science, from chronobiology and neuroscience to psychophysics and computer graphics. She is leveraging this research in practice through OCULIGHT dynamics, a startup company she co-founded, which offers specialized consulting services on daylight performance and its psycho-physiological effects on building occupants.     She is the author of more than 200 papers published in peer-reviewed journals and international conferences and the recipient of several grants and awards including: the Daylight Award for Research (2016), eleven publication awards and distinctions (2009, 2011, 2012, 2015, 2018, 2019) including the Taylor Technical Talent Award 2009 granted by the Illuminating Engineering Society, the 3M Non-Tenured Faculty Grant (2009), the Mitsui Career Development Professorship at MIT (2008) and the EPFL prize of the Chorafas Foundation awarded to her PhD thesis in Sustainability (2005). Her research or teaching has been supported by professional, institutional and industrial organizations such as: the Swiss and the U.S. National Science Foundations, the Velux Foundation, the European Horizon 2020 program, the Boston Society of Architects, the MIT Energy Initiative and InnoSuisse. She was the leader and faculty advisor of the Swiss Team and its NeighborHub project, who won the U.S. Solar Decathlon 2017 competition with 8 podiums out of 10 contests.    She is a member of the Board of the LafargeHolcim Foundation for Sustainable Construction and Head of its Academic Committee. She is also a member of the Editorial Board of the journal Building and Environment by Elsevier, and of the journals LEUKOS (of the Illuminating Engineering Society) and Buildings and Cities, by Taylor and Francis. She is expert to the Innovation Council of InnoSuisse and Founding member as well as Board member of the Foundation Culture du Bâti (CUB), and is also founding member of the Daylight Academy and an active member of several committees of the Illuminating Engineering Society (IES) and International Commission on Illumination (CIE).
François Maréchal
Ph D. in engineering– Chemical process engineer Researcher and lecturer in the field of computer aided process and energy systems engineering. Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL. I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation. Short summary of my scientific carrer After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering. In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems. Since 2001, I’m working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where I’m leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern : Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems. I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.