A carbon dioxide scrubber is a piece of equipment that absorbs carbon dioxide (CO2). It is used to treat exhaust gases from industrial plants or from exhaled air in life support systems such as rebreathers or in spacecraft, submersible craft or airtight chambers. Carbon dioxide scrubbers are also used in controlled atmosphere (CA) storage. They have also been researched for carbon capture and storage as a means of combating climate change.
Amine gas treating
The primary application for CO2 scrubbing is for removal of CO2 from the exhaust of coal- and gas-fired power plants. Virtually the only technology being seriously evaluated involves the use of various amines, e.g. monoethanolamine. Cold solutions of these organic compounds bind CO2, but the binding is reversed at higher temperatures:
CO2 + 2 HOCH2CH2NH2 ↔ HOCH2CH2NH3+ + HOCH2CH2NHCO2−
this technology has only been lightly implemented because of capital costs of installing the facility and the operating costs of utilizing it.
Several minerals and mineral-like materials reversibly bind CO2. Most often, these minerals are oxides or hydroxides, and often the CO2 is bound as carbonate. Carbon dioxide reacts with quicklime (calcium oxide) to form limestone (calcium carbonate), in a process called carbonate looping. Other minerals include serpentinite, a magnesium silicate hydroxide, and olivine. Molecular sieves also function in this capacity.
Various (cyclical) scrubbing processes have been proposed to remove CO2 from the air or from flue gases and release them in a controlled environment, reverting the scrubbing agent. These usually involve using a variant of the Kraft process which may be based on sodium hydroxide. The CO2 is absorbed into such a solution, transfers to lime (via a process called causticization) and is released again through the use of a kiln. With some modifications to the existing processes (mainly changing to an oxygen-fired kiln) the resulting exhaust becomes a concentrated stream of CO2, ready for storage or use in fuels.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Carbon dioxide removal (CDR), also known as carbon removal, greenhouse gas removal (GGR) or negative emissions, is a process in which carbon dioxide gas () is removed from the atmosphere by deliberate human activities and durably stored in geological, terrestrial, or ocean reservoirs, or in products. In the context of net zero greenhouse gas emissions targets, CDR is increasingly integrated into climate policy, as an element of climate change mitigation strategies.
Carbon capture and storage (CCS) is a process in which a relatively pure stream of carbon dioxide (CO2) from industrial sources is separated, treated and transported to a long-term storage location. For example, the carbon dioxide stream that is to be captured can result from burning fossil fuels or biomass. Usually the CO2 is captured from large point sources, such as a chemical plant or biomass plant, and then stored in an underground geological formation. The aim is to reduce greenhouse gas emissions and thus mitigate climate change.
Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course examines the supply of energy from various angles: available resources, how they can be combined or substituted, their private and social costs, whether they can meet the demand, and how t
Introduction to economic analysis applied to environmental issues: all the necessary basic concepts, including cost-benefit analysis, for environmental policy making and its instruments (examples: cli
Gaseous carbon exchange at the water-air interface of rivers and lakes is an essential process for regional and global carbon cycle assessments. Many studies have shown that rivers surrounding urban landscapes can be hotspots for greenhouse gas (GHG) emiss ...
River networks play a crucial role in the global carbon cycle, as relevant sources of carbon dioxide (CO2) to the atmosphere. Advancements in high-frequency monitoring in aquatic environments have enabled measurement of dissolved CO2 concentration at tempo ...
Hoboken2024
,
Globally, billions of people burn fuels indoors for cooking and heating, which contributes to millions of chronic illnesses and premature deaths annually. Additionally, residential burning contributes significantly to black carbon emissions, which have the ...