Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Xenobiology (XB) is a subfield of synthetic biology, the study of synthesizing and manipulating biological devices and systems. The name "xenobiology" derives from the Greek word xenos, which means "stranger, alien". Xenobiology is a form of biology that is not (yet) familiar to science and is not found in nature. In practice, it describes novel biological systems and biochemistries that differ from the canonical DNA–RNA-20 amino acid system (see central dogma of molecular biology). For example, instead of DNA or RNA, XB explores nucleic acid analogues, termed xeno nucleic acid (XNA) as information carriers. It also focuses on an expanded genetic code and the incorporation of non-proteinogenic amino acids into proteins. "Astro" means "star" and "exo" means "outside". Both exo- and astrobiology deal with the search for naturally evolved life in the Universe, mostly on other planets in the circumstellar habitable zone. (These are also occasionally referred to as xenobiology.) Whereas astrobiologists are concerned with the detection and analysis of life elsewhere in the Universe, xenobiology attempts to design forms of life with a different biochemistry or different genetic code than on planet Earth. Xenobiology has the potential to reveal fundamental knowledge about biology and the origin of life. In order to better understand the origin of life, it is necessary to know why life evolved seemingly via an early RNA world to the DNA-RNA-protein system and its nearly universal genetic code. Was it an evolutionary "accident" or were there constraints that ruled out other types of chemistries? By testing alternative biochemical "primordial soups", it is expected to better understand the principles that gave rise to life as we know it. Xenobiology is an approach to develop industrial production systems with novel capabilities by means of biopolymer engineering and pathogen resistance. The genetic code encodes in all organisms 20 canonical amino acids that are used for protein biosynthesis.
Maartje Martina Cornelia Bastings, Jorieke Weiden
Philipp Georg Werner Seeberger