Concept

Projective line over a ring

In mathematics, the projective line over a ring is an extension of the concept of projective line over a field. Given a ring A with 1, the projective line P(A) over A consists of points identified by projective coordinates. Let U be the group of units of A; pairs (a, b) and (c, d) from A × A are related when there is a u in U such that ua = c and ub = d. This relation is an equivalence relation. A typical equivalence class is written U[a, b]. P(A) = { U[a, b] : aA + bA = A }, that is, U[a, b] is in the projective line if the ideal generated by a and b is all of A. The projective line P(A) is equipped with a group of homographies. The homographies are expressed through use of the matrix ring over A and its group of units V as follows: If c is in Z(U), the center of U, then the group action of matrix on P(A) is the same as the action of the identity matrix. Such matrices represent a normal subgroup N of V. The homographies of P(A) correspond to elements of the quotient group V / N . P(A) is considered an extension of the ring A since it contains a copy of A due to the embedding E : a → U[a, 1]. The multiplicative inverse mapping u → 1/u, ordinarily restricted to the group of units U of A, is expressed by a homography on P(A): Furthermore, for u,v ∈ U, the mapping a → uav can be extended to a homography: Since u is arbitrary, it may be substituted for u−1. Homographies on P(A) are called linear-fractional transformations since Rings that are fields are most familiar: The projective line over GF(2) has three elements: U[0, 1], U[1, 0], and U[1, 1]. Its homography group is the permutation group on these three. The ring Z / 3Z, or GF(3), has the elements 1, 0, and −1; its projective line has the four elements U[1, 0], U[1, 1], U[0, 1], U[1, −1] since both 1 and −1 are units. The homography group on this projective line has 12 elements, also described with matrices or as permutations. For a finite field GF(q), the projective line is the Galois geometry PG(1, q). J. W. P. Hirschfeld has described the harmonic tetrads in the projective lines for q = 4, 5, 7, 8, 9.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.