Soil respiration refers to the production of carbon dioxide when soil organisms respire. This includes respiration of plant roots, the rhizosphere, microbes and fauna.
Soil respiration is a key ecosystem process that releases carbon from the soil in the form of CO2. CO2 is acquired by plants from the atmosphere and converted into organic compounds in the process of photosynthesis. Plants use these organic compounds to build structural components or respire them to release energy. When plant respiration occurs below-ground in the roots, it adds to soil respiration. Over time, plant structural components are consumed by heterotrophs. This heterotrophic consumption releases CO2 and when this CO2 is released by below-ground organisms, it is considered soil respiration.
The amount of soil respiration that occurs in an ecosystem is controlled by several factors. The temperature, moisture, nutrient content and level of oxygen in the soil can produce extremely disparate rates of respiration. These rates of respiration can be measured in a variety of methods. Other methods can be used to separate the source components, in this case the type of photosynthetic pathway (C3/C4), of the respired plant structures.
Soil respiration rates can be largely affected by human activity. This is because humans have the ability to and have been changing the various controlling factors of soil respiration for numerous years. Global climate change is composed of numerous changing factors including rising atmospheric CO2, increasing temperature and shifting precipitation patterns. All of these factors can affect the rate of global soil respiration. Increased nitrogen fertilization by humans also has the potential to affect rates over the entire planet.
Soil respiration and its rate across ecosystems is extremely important to understand. This is because soil respiration plays a large role in global carbon cycling as well as other nutrient cycles. The respiration of plant structures releases not only CO2 but also other nutrients in those structures, such as nitrogen.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Soil health is a state of a soil meeting its range of ecosystem functions as appropriate to its environment. In more colloquial terms, the health of soil arises from favorable interactions of all soil components (living and non-living) that belong together, as in microbiota, plants and animals. It is possible that a soil can be healthy in terms of eco-system functioning but not necessarily serve crop production or human nutrition directly, hence the scientific debate on terms and measurements.
Soil organic matter (SOM) is the organic matter component of soil, consisting of plant and animal detritus at various stages of decomposition, cells and tissues of soil microbes, and substances that soil microbes synthesize. SOM provides numerous benefits to the physical and chemical properties of soil and its capacity to provide regulatory ecosystem services. SOM is especially critical for soil functions and quality.
An earthworm is a terrestrial invertebrate that belongs to the phylum Annelida. They exhibit a tube-within-a-tube body plan; they are externally segmented with corresponding internal segmentation; and they usually have setae on all segments. They occur worldwide where soil, water, and temperature allow. Earthworms are commonly found in soil, eating a wide variety of organic matter. This organic matter includes plant matter, living protozoa, rotifers, nematodes, bacteria, fungi, and other microorganisms.
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
As air temperature and vapor pressure deficit (VPD) increase continuously, forests are losing more water through evapotranspiration, with large consequences for local and global hydrological cycles. In regions with high vegetation cover, soil warming can b ...
Elsevier2024
Electron transfer reactions are central to the transformation of energy in the environment and play an important role in biogeochemical element cycling. In soils, one of the main drivers of carbon cycling is the activity of organisms that utilize the energ ...
Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). Heat and VPD have been identified as increasingly important drivers of plant functioning in terrestrial biomes a ...