The Paratethys sea, Paratethys ocean, Paratethys realm or just Paratethys was a large shallow inland sea that stretched from the region north of the Alps over Central Europe to the Aral Sea in Central Asia.
Paratethys was peculiar due to its paleogeography: it consisted of a series of deep basins, formed during the Oxfordian stage of the Late Jurassic as an extension of the rift that formed the Central Atlantic Ocean. These basins were connected with each other and the global ocean by narrow and shallow seaways that often limited water exchange and caused widespread long-term anoxia.
Paratethys was at times reconnected with the Tethys or its successors (the Mediterranean Sea or the Indian Ocean) during the Oligocene and the early and middle Miocene times, but at the onset of the late Miocene epoch, the tectonically trapped sea turned into a megalake from the eastern Alps to what is now Kazakhstan. From the Pliocene epoch onward (after 5 million years ago), Paratethys became progressively shallower. Today's Black Sea, Caspian Sea, Aral Sea, Lake Urmia, Namak Lake and others are remnants of the Paratethys Sea.
Paratethys formed about 34 Ma (million years ago) at the beginning of the Oligocene epoch, when the northern region of the Tethys Ocean (Peri-Tethys) was separated from the Mediterranean region of the Tethys realm due to the formation of the Alps, Carpathians, Dinarides, Taurus and Elburz mountains.
During the Jurassic and Cretaceous periods, this part of Eurasia was covered by shallow seas that formed the northern margins of the Tethys Ocean. However, because Anatolia, the southern boundary of the Paleo-Tethys, is a part of the original Cimmerian continent, the last remnant of Paleo-Tethys Ocean might be oceanic crust under the Black Sea. The Tethys Ocean formed between Laurasia (Eurasia and North America) and Gondwana (Africa, India, Antarctica, Australia, and South America) when the supercontinent Pangea broke up during the Triassic (200 million years ago).
The name Paratethys was first used by Vladimir Laskarev in 1924.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Caspian Sea is the world's largest inland body of water, often described as the world's largest lake or a full-fledged sea. An endorheic basin, it lies between Europe and Asia: east of the Caucasus, west of the broad steppe of Central Asia, south of the fertile plains of Southern Russia in Eastern Europe, and north of the mountainous Iranian Plateau of West Asia. It covers a surface area of (excluding the highly saline lagoon of Garabogazköl to its east), an area approximately equal to that of Japan, with a volume of .
An inland sea (also known as an epeiric sea or an epicontinental sea) is a continental body of water which is very large in area and is either completely surrounded by dry land or connected to an ocean by a river, strait or "arm of the sea". An inland sea will generally have higher salinity than a freshwater lake, but usually lower salinity than seawater. As with other seas, inland seas experience tidality governed by the orbits of the Moon and Sun. What constitutes an "inland sea" is complex and somewhat necessarily vague.
The Messinian salinity crisis (also referred to as the Messinian event, and in its latest stage as the Lago Mare event) was a geological event during which the Mediterranean Sea went into a cycle of partial or nearly complete desiccation (drying-up) throughout the latter part of the Messinian age of the Miocene epoch, from 5.96 to 5.33 Ma (million years ago). It ended with the Zanclean flood, when the Atlantic reclaimed the basin.
Sediment-laden riverine floods transport large quantities of dissolved oxygen into the receiving deep layers of lakes. Hence, the water quality of deep lakes is strongly influenced by the frequency of riverine floods. Although flood frequency reflects clim ...
Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions ...
Nature Publishing Group2016
We identified submicrometer-sized framboidal sphalerite (ZnS) below the base of supergene oxidation in a Carlin-type gold deposit of Eocene age in Nevada, United States, where the framboidal sphalerite forms a blanket-like body containing >400,000 metric t ...