Summary
Galvanization or galvanizing (also spelled galvanisation or galvanising) is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are coated by submerging them in a bath of hot, molten zinc. The zinc coating, when intact, prevents corrosive substances from reaching the underlying iron. Additional electroplating such as a chromate conversion coating may be applied to provide further surface passivation to the substrate material. The process is named after the Italian physician, physicist, biologist and philosopher Luigi Galvani (9 September 1737 – 4 December 1798). The earliest known example of galvanized iron was encountered by Europeans on 17th-century Indian armour in the Royal Armouries Museum collection. The term "galvanized" can also be used metaphorically of any stimulus which results in activity by a person or group of people. In modern usage, the term "galvanizing" has largely come to be associated with zinc coatings, to the exclusion of other metals. Galvanic paint, a precursor to hot-dip galvanizing, was patented by Stanislas Sorel, of Paris, on June 10, 1837, as an adoption of a term from a highly fashionable field of contemporary science, despite having no evident relation to it. Hot-dip galvanizing deposits a thick, robust layer of zinc iron alloys on the surface of a steel item. In the case of automobile bodies, where additional decorative coatings of paint will be applied, a thinner form of galvanizing is applied by electrogalvanizing. The hot-dip process generally does not reduce strength to a measurable degree, with the exception of high-strength steels where hydrogen embrittlement can become a problem. Thermal diffusion galvanizing, or Sherardizing, provides a zinc diffusion coating on iron- or copper-based materials. Galvanized steel can last for many decades if other supplementary measures are maintained, such as paint coatings and additional sacrificial anodes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.