Summary
In computer programming, a nested function (or nested procedure or subroutine) is a function which is defined within another function, the enclosing function. Due to simple recursive scope rules, a nested function is itself invisible outside of its immediately enclosing function, but can see (access) all local objects (data, functions, types, etc.) of its immediately enclosing function as well as of any function(s) which, in turn, encloses that function. The nesting is theoretically possible to unlimited depth, although only a few levels are normally used in practical programs. Nested functions are used in many approaches to structured programming, including early ones, such as ALGOL, Simula 67 and Pascal, and also in many modern dynamic languages and functional languages. However, they are traditionally not supported in the (originally simple) C-family of languages. Nested functions assume function scope or block scope. The scope of a nested function is inside the enclosing function, i.e. inside one of the constituent blocks of that function, which means that it is invisible outside that block and also outside the enclosing function. A nested function can access other local functions, variables, constants, types, classes, etc. that are in the same scope, or in any enclosing scope, without explicit parameter passing, which greatly simplifies passing data into and out of the nested function. This is typically allowed for both reading and writing. Nested functions may in certain situations (and languages) lead to the creation of a closure. If it is possible for the nested function to escape the enclosing function, for example if functions are first class objects and a nested function is passed to another function or returned from the enclosing function, then a closure is created and calls to this function can access the environment of the original function. The frame of the immediately enclosing function must continue to be alive until the last referencing closure dies and non-local automatic variables referenced in closures can therefore not be stack allocated.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.