A superheater is a device used to convert saturated steam or wet steam into superheated steam or dry steam. Superheated steam is used in steam turbines for electricity generation, steam engines, and in processes such as steam reforming. There are three types of superheaters: radiant, convection, and separately fired. A superheater can vary in size from a few tens of feet to several hundred feet (a few metres to some hundred metres).
A radiant superheater is placed directly in radiant zone of the combustion chamber near the water wall so as to absorb heat by radiation.
A convection superheater is located in the convective zone of the furnace usually ahead of economizer (in the path of the hot flue gases). These are also called primary superheaters.
A separately fired superheater is a superheater that is placed outside the main boiler, which has its own separate combustion system. This superheater design incorporates additional burners in the area of superheater pipes. This type of superheater is rarely if ever used, because of poor efficiency and steam quality that is not better than other superheater types.
In a steam engine, the superheater re-heats the steam generated by the boiler, increasing its thermal energy and decreasing the likelihood that it will condense inside the engine. Superheaters increase the thermal efficiency of the steam engine, and have been widely adopted. Steam which has been superheated is logically known as superheated steam; non-superheated steam is called saturated steam or wet steam. Superheaters were applied to steam locomotives in quantity from the early 20th century, to most steam vehicles, and to stationary steam engines. This equipment is still used in conjunction with steam turbines in electrical power generating stations throughout the world.
In steam locomotive use, by far the most common form of superheater is the fire-tube type. This takes the saturated steam supplied in the dry pipe into a superheater header mounted against the tube sheet in the smokebox.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Steam is a substance containing water in the gas phase, and sometimes also an aerosol of liquid water droplets, or air. This may occur due to evaporation or due to boiling, where heat is applied until water reaches the enthalpy of vaporization. Steam that is saturated or superheated (water vapor) is invisible; however, wet steam, a visible mist or aerosol of water droplets, is often referred to as "steam".
Superheated steam is steam at a temperature higher than its vaporization point at the absolute pressure where the temperature is measured. Superheated steam can therefore cool (lose internal energy) by some amount, resulting in a lowering of its temperature without changing state (i.e., condensing) from a gas, to a mixture of saturated vapor and liquid. If unsaturated steam (a mixture which contains both water vapor and liquid water droplets) is heated at constant pressure, its temperature will also remain constant as the vapor quality (think dryness, or percent saturated vapor) increases towards 100%, and becomes dry (i.
In thermodynamics, the thermal efficiency () is a dimensionless performance measure of a device that uses thermal energy, such as an internal combustion engine, steam turbine, steam engine, boiler, furnace, refrigerator, ACs etc. For a heat engine, thermal efficiency is the ratio of the net work output to the heat input; in the case of a heat pump, thermal efficiency (known as the coefficient of performance) is the ratio of net heat output (for heating), or the net heat removed (for cooling) to the energy input (external work).
Thescalable synthesis of high-temperature H-2-sieving membranesfor energy-efficient carbon capture can potentiallyenable the implementation of precombustion carbon capture at a rapidpace. Synthesis of H-2-sieving membranes for high-temperatureapplications ...
To curb the severe effects of climate change, our society needs to radically reduce its CO2 footprint. For the heavy-duty sector, where electrification is difficult, alternative fuels can be the solution. Methane-fueled engines have lower energy-specific C ...
The production of superheated melt during hypervelocity impact events has been proposed to be a common occurrence on terrestrial planetary bodies. Recent direct evidence of superheated impact melt temperatures exceeding > 2370 degrees C from the Kamestasti ...