Director, EPFL Soil Mechanics LaboratoryDirector, EPFL Civil Engineering SectionEditor in Chief, ElsevierMember of the Swiss Academy of Engineering SciencesFounding Partner, Geoeg & MeduSoilActive in academic research in the following institutions: Lausanne, EPFL, Durham, Duke University, Nanjing, Hohai UniversityProfessor Lyesse Laloui teaches at EPFL, where he directs the Soil Mechanics Laboratory as well as the Civil Engineering Section. He is a founding partner of the international engineering company Geoeg, and the start-up MeduSoil. In addition, he is an adjunct professor at Duke University, USA and an advisory professor at Hohai University, China as well as honorary director of the International Joint Research Center for Energy Geotechnics in China.He is the recipient of an Advance ERC grant for his BIO-mediated GEO-material Strengthening project. Editor in Chief of the Elsevier Geomechanics for Energy and the Environment journal, he is a leading scientist in the field of geomechanics and geo-energy. He has written and edited 13 books and published over 320 peer reviewed papers; his work is cited more than 6000 times with an h-index of 39 (Scopus). Two of his papers are among the top 1% in the academic field of Engineering. He has given keynote and invited lectures at more than 40 leading international conferences. He has received several international awards (IACMAG, RM Quigley, Roberval) and delivered honorary lectures (Vardoulakis, Minnesota; G.A. Leonards, Purdue; Kersten, Minnesota). He recently acted as the Chair of the international evaluation panel of Civil and Geological Engineering R&D Units of Portugal.Nov. 2019 For further information visit www.epfl.ch/labs/lms/ ; geoeg.net ; medusoil.com Ph D. in engineering Chemical process engineer
Researcher and lecturer in the field of computer aided process and energy systems engineering.
Lecturer in the mechanical engineering, electrical engineering and environmental sciences engineering in EPFL.
I'm responsible for the Minor in Energy of EPFL and I'm involved in 3 projects of the Competence Center in Energy and Mobility (2nd generation biofuel, Wood SOFC, and gas turbine development with CO2 mitigation) in which i'm contributing to the energy conversion system design and optimisation.
Short summary of my scientific carrer
After a graduation in chemical engineering from the University of Liège, I have obtained a Ph. D. from the University of Liège in the LASSC laboratory of Prof. Kalitventzeff (former president of the European working party on computer aided process engineering). This laboratory was one of the pioneering laboratory in the field of Computer Aided Process Engineering.
In the group of Professor Kalitventzeff, I have worked on the development and the applications of data reconciliation, process modelling and optimisation techniques in the chemical process industry, my experience ranges from nuclear power stations to chemical plants. In the LASSC, I have been responsible from the developments in the field of rational use of energy in the industry. My first research topic has been the methodological development of process integration techniques, combining the use of pinch based methods and of mathematical programming: e.g. for the design of multiperiod heat exchanger networks or Mixed integer non linear programming techniques for the optimal management of utility systems. Fronted with applications in the industry, my work then mainly concentrated on the optimal integration of utility systems considering not only the energy requirements but the cost of the energy requirements and the energy conversion systems. I developed methods for analysing and integrating the utility system, the steam networks, combustion (including waste fuel), gas turbines or other advanced energy conversion systems (cogeneration, refrigeration and heat). The techniques applied uses operation research tools like mixed integer linear programming and exergy analysis. In order to evaluate the results of the utility integration, a new graphical method for representing the integration of the utility systems has been developed. By the use of MILP techniques, the method developed for the utility integration has been extended to handled site scale problems, to incorporate environmental constraints and reduce the water usage. This method (the Effect Modelling and Optimisation method) has been successfully applied to the chemical plants industry, the pulp and paper industry and the power plant. Instead of focusing on academic problems, I mainly developed my research based on industrial applications that lead to valuable and applicable patented results. Recently the methods developed have been extended to realise the thermoeconomic optimisation of integrated systems like fuel cells. My present R&D work concerns the application of multi-objective optimisation strategies in the design of processes and integrated energy conversion systems.
Since 2001, Im working in the Industrial Energy Systems Laboratory (LENI) of Ecole Polytechnique fédérale de Lausanne (EPFL) where Im leading the R&D activities in the field of Computer Aided Analysis and Design of Industrial Energy Systems with a major focus on sustainable energy conversion system development using thermo-economic optimisation methodologies. A part from the application and the development of process integration techniques, that remains my major field of expertise, the applications concern :
Rational use of water and energy in Industrial processes and industrial production sites : projects with NESTLE, EDF, VEOLIA and Borregaard (pulp and paper).Energy conversion and process design : biofuels from waste biomass (with GASNAT, EGO and PSI), water dessalination and waste water treatment plant (VEOLIA), power plant design (ALSTOM), Energy conversion from geothermal sources (BFE). Integrated energy systems in urban areas : together with SCANE and SIG (GE) and IEA annexe 42 for micro-cogeneration systems.
I as well contributed to the definition of the 2000 Watt society and to studies concerning the emergence of green technologies on the market in the frame of the Alliance for Global Sustainability.
I am currently an assistant Professor and the head of the Geo-Energy Lab - Gaznat Chair on GeoEnergy at Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland. Prior to joining EPFL, I have worked for Schlumberger in research and development from 2006 until May 2015 - serving in a variety of roles ranging from project manager to principal scientist in both Europe and the United States. I received my PhD in mechanics from Ecole Polytechnique, France in 2002 and worked as a research scientist in the hydraulic fracturing research group of CSIRO division of Petroleum resources (Melbourne, Australia) from 2003 to 2006. During my time in Schlumberger R&D, I have worked on problems related to the integrity of deep wells, large scale monitoring of reservoir deformation and more specifically on the stimulation of oil and gas wells by hydraulic fracturing. My current research interests cover hydraulic fracture mechanics, mechanics of porous media and dense suspensions flow.
Daniel Favrat got his Master degree in Mechanical Engineering from EPFL in 1972 and his PhD also from EPFL. He then spent 12 years in industrial research laboratories in Canada (Esso Canada) and Switzerland (CERAC: Centre Européen de Recherche Atlas Copco). From 1988 to 2013, he was full professor and director of the Industrial Energy Systems Laboratory (LENI) at EPFL. During that period he was successively director of the Institute of Energy and director of the Institute of Mechanical Engineering. From August 2013 he works at EPFL Energy Center first as director ad interim and now as director technologies.
His research fields include systemic analyses accounting for energy, environment and economics (so-called environomic optimisation) and advanced conversion systems for a more rational use of energy (heat pumps &ORC, engines, fuel cells, power plants, etc).
He is a member of the Swiss Academy of Engineering Sciences and of the National Academy of Technology in France. He has also an active participation in the World Federation of Engineering Organizations (WFEO) as a member of the executive committee and vice-chair of the energy committee. He is associate editor of the journal "Energy" and of International Journal of thermodynamics. He is the author of several books on thermodynamics and energy systems analysis. He is also affiliate professor at the Royal Institute of Technology (KTH) in Stockholm.
FERNANDO PORTÉ AGEL Professor Director, Wind Engineering and Renewable Energy Laboratory (WIRE) School of Architecture, Civil and Environmental Engineering (ENAC) École Polytechnique Fédérale de Lausanne (EPFL) e-mail: fernando.porte-agel@epfl.ch RESEARCH INTERESTS Environmental fluid mechanics. Computational fluid dynamics. Atmospheric boundary layers. Turbulence. Large-eddy simulation. Wind energy. Wind engineering. Renewable energy. EDUCATION Ph.D. 1999 Johns Hopkins University, Environmental Engineering M.Sc. 1995 Hydrologic Engineering, IHE - Delft, The Netherlands B.S. 1992 Universidad Politécnica de Cataluña, Spain ACADEMIC POSITIONS 2010-present: Full Professor, School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Switzerland 2005-2009: Associate Professor, St. Anthony Falls Laboratory and Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA 2000-2005: Assistant Professor, St. Anthony Falls Laboratory, Department of Civil Engineering, University of Minnesota, Minneapolis, MN, USA AWARDS AND FELLOWSHIPS McKnight Presidential Fellow (2006-2009), University of Minnesota, USA McKnight Land-Grant Professorship (2003-2005), University of Minnesota, USA NASA Young Investigator Award (2001-2004), USA NSF CAREER Award (2001-2006), (Division of Earth Sciences Hydrological Sciences), USA Outstanding Student Paper Award: Hydrology Section, Fall Meeting of the American Geophysical Union; San Francisco, 1998. Research Award (1995-1997): La Caixa fellowship program; Barcelona, Spain. Research Award (1993-1995): Dutch Ministry of Foreign Affairs fellowship. Research Award (1990-1993): Spanish Civil Engineering Association. David Atienza Alonso is an associate professor of EE and director of the Embedded Systems Laboratory (ESL) at EPFL, Switzerland. He received his MSc and PhD degrees in computer science and engineering from UCM, Spain, and IMEC, Belgium, in 2001 and 2005, respectively. His research interests include system-level design methodologies for multi-processor system-on-chip (MPSoC) servers and edge AI architectures. Dr. Atienza has co-authored more than 350 papers, one book, and 12 patents in these previous areas. He has also received several recognitions and award, among them, the ICCAD 10-Year Retrospective Most Influential Paper Award in 2020, Design Automation Conference (DAC) Under-40 Innovators Award in 2018, the IEEE TCCPS Mid-Career Award in 2018, an ERC Consolidator Grant in 2016, the IEEE CEDA Early Career Award in 2013, the ACM SIGDA Outstanding New Faculty Award in 2012, and a Faculty Award from Sun Labs at Oracle in 2011. He has also earned two best paper awards at the VLSI-SoC 2009 and CST-HPCS 2012 conference, and five best paper award nominations at the DAC 2013, DATE 2013, WEHA-HPCS 2010, ICCAD 2006, and DAC 2004 conferences. He serves or has served as associate editor of IEEE Trans. on Computers (TC), IEEE Design & Test of Computers (D&T), IEEE Trans. on CAD (T-CAD), IEEE Transactions on Sustainable Computing (T-SUSC), and Elsevier Integration. He was the Technical Program Chair of DATE 2015 and General Chair of DATE 2017. He served as President of IEEE CEDA in the period 2018-2019 and was GOLD member of the Board of Governors of IEEE CASS from 2010 to 2012. He is a Distinguished Member of ACM and an IEEE Fellow.