In computer operating systems, demand paging (as opposed to anticipatory paging) is a method of virtual memory management. In a system that uses demand paging, the operating system copies a disk page into physical memory only if an attempt is made to access it and that page is not already in memory (i.e., if a page fault occurs). It follows that a process begins execution with none of its pages in physical memory, and many page faults will occur until most of a process's working set of pages are located in physical memory. This is an example of a lazy loading technique.
Demand paging follows that pages should only be brought into memory if the executing process demands them. This is often referred to as lazy loading as only those pages demanded by the process are swapped from secondary storage to main memory. Contrast this to pure swapping, where all memory for a process is swapped from secondary storage to main memory during the process startup.
Commonly, to achieve this process a memory management unit is used. The memory management unit maps logical memory to physical memory. Entries in the memory management unit include a bit that indicates whether a page is valid or invalid. A valid page is one that currently resides in main memory. An invalid page is one that currently resides in secondary memory. When a process tries to access a page, the following steps are generally followed:
Attempt to access page.
If page is valid (in memory) then continue processing instruction as normal.
If page is invalid then a page-fault trap occurs.
Check if the memory reference is a valid reference to a location on secondary memory. If not, the process is terminated (illegal memory access). Otherwise, we have to page in the required page.
Schedule disk operation to read the desired page into main memory.
Restart the instruction that was interrupted by the operating system trap.
Demand paging, as opposed to loading all pages immediately:
Only loads pages that are demanded by the executing process.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course introduces the students to the basic notions
of computer architecture and, in particular, to the
choices of the Instruction Set Architecture and to the
memory hierarchy of modern systems.
In computing, mmap(2) is a POSIX-compliant Unix system call that maps files or devices into memory. It is a method of I/O. It implements demand paging because file contents are not immediately read from disk and initially use no physical RAM at all. The actual reads from disk are performed after a specific location is accessed, in a lazy manner. After the mapping is no longer needed, the pointers must be unmapped with munmap(2).
In a computer operating system that uses paging for virtual memory management, page replacement algorithms decide which memory pages to page out, sometimes called swap out, or write to disk, when a page of memory needs to be allocated. Page replacement happens when a requested page is not in memory (page fault) and a free page cannot be used to satisfy the allocation, either because there are none, or because the number of free pages is lower than some threshold.
In computer operating systems, memory paging (or swapping on some Unix-like systems) is a memory management scheme by which a computer stores and retrieves data from secondary storage for use in main memory. In this scheme, the operating system retrieves data from secondary storage in same-size blocks called pages. Paging is an important part of virtual memory implementations in modern operating systems, using secondary storage to let programs exceed the size of available physical memory.
Disaggregated memory can address resource provisioning inefficiencies in current datacenters. Multiple software runtimes for disaggregated memory have been proposed in an attempt to make disaggregated memory practical. These systems rely on the virtual mem ...
ASSOC COMPUTING MACHINERY2021
, ,
Virtual memory (VM) is critical to the usability and programmability of hardware accelerators. Unfortunately, implementing accelerator VM efficiently is challenging because the area and power constraints make it difficult to employ the large multi-level TL ...
A method for optimizing memory access for database operations is provided. The method may include identifying an access pattern associated with a database operation. The access pattern may include data required to perform the database operation. One or mor ...