Summary
Multinucleate cells (also known as multinucleated or polynuclear cells) are eukaryotic cells that have more than one nucleus per cell, i.e., multiple nuclei share one common cytoplasm. Mitosis in multinucleate cells can occur either in a coordinated, synchronous manner where all nuclei divide simultaneously or asynchronously where individual nuclei divide independently in time and space. Certain organisms may have a multinuclear stage of their life cycle. For example, slime molds have a vegetative, multinucleate life stage called a plasmodium. Although not normally viewed as a case of multinucleation, plant cells share a common cytoplasm by plasmodesmata, and most cells in animal tissues are in communication with their neighbors via gap junctions. Multinucleate cells, depending on the mechanism by which they are formed, can be divided into "syncytia" (formed by cell fusion) or "coenocytes" (formed by nuclear division not being followed by cytokinesis). A number of dinoflagellates are known to have two nuclei. Unlike other multinucleated cells these nuclei contain two distinct lineages of DNA: one from the dinoflagellate and the other from a symbiotic diatom. Some bacteria, such as Mycoplasma pneumoniae, a pathogen of the respiratory tract, may display multinuclear filaments as a result of a delay between genome replication and cellular division. Some biologists use the term "acellular" to refer to multinucleate cell forms (syncitia and plasmodia), such as to differentiate "acellular" slime molds from the purely "cellular" ones (which do not form such structures). This usage is incorrect and highly misleading to laymen, and as such it is strongly discouraged. Some use the term "syncytium" in a wide sense, to mean any type of multinucleate cell, while others differentiate the terms for each type. Syncytium Syncytia are multinuclear cells that can form either through normal biological processes, such as the mammalian placenta, or under the influence of certain pathogens, such as HIV, via fusion of the plasma membrane.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.