Concept

Ate complex

In chemistry, an ate complex is a salt formed by the reaction of a Lewis acid with a Lewis base whereby the central atom (from the Lewis acid) increases its valence and gains a negative formal charge. (In this definition, the meaning of valence is equivalent to coordination number). Often in chemical nomenclature the term ate is suffixed to the element in question. For example, the ate complex of a boron compound is called a borate. Thus trimethylborane and methyllithium react to form the ate compound , lithium tetramethylborate(1-). This concept was introduced by Georg Wittig in 1958. Ate complexes are common for metals, including the transition metals (groups 3-11), as well as the metallic or semi-metallic elements of group 2, 12, and 13. They are also well-established for third-period or heavier elements of groups 14–18 in their higher oxidation states. Ate complexes are a counterpart to onium ions. Lewis acids form ate ions when the central atom reacts with a donor ( X-type ligand), gaining one more bond and becoming a negative-charged anion. Lewis bases form onium ions when the central atom reacts with an acceptor ( Z-type ligand), gaining one more bond and becoming a positive-charged cation. The phrase -ate ion or ate ion can refer generically to many negatively charged anions. -ate compound or ate compound can refer to salts of the anions or esters of the functional groups. Chemical terms ending in -ate (and -ite) generally refer to the negatively charged anions, neutral radicals, and covalently bonded functional groups that share the same chemical formulas (with different charges). For example, the nitrate anion, ; the nitrate functional group that forms nitrate esters, or ; and the nitrate radical or nitrogen trioxide, . Most numerous are oxyanions (oxyacids that have lost one or more protons to deprotonation) and the radicals and functional groups that share their names.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (1)
Related publications (4)

Organocatalysts in C-N Bond Forming Reactions of Amines with CO2

Martin Hulla

The thesis describes a simple approach for N-formylation of amines with CO2 and hydrosilane reducing agents, the use of organic salts as N-formylation catalysts, their physical properties required for high catalytic activity and their role in the catalytic ...
EPFL2019

Stereoselective synthesis of alkenes via base-metal-catalyzed addition reactions to alkynes and activation of hydrogen peroxide and carbon dioxide by iron complexes

Fedor Zhurkin

Alkene functionality can be found in the majority of natural products, drugs, catalysts and organic materials. Therefore, methods of C-C double bond formation constitute a cornerstone of organic synthesis. Selective formation of either (Z)- or (E)-isomer i ...
EPFL2017

Iron Pincer Complexes as Catalysts and Intermediates in Alkyl Aryl Kumada Coupling Reactions

Rosario Scopelliti, Xile Hu, Matthew Wodrich, Gerald Bauer

Iron-catalyzed alkylaryl Kumada coupling has developed into an efficient synthetic method, yet its mechanism remains vague. Here, we apply a bis(oxazolinylphenyl)amido pincer ligand (Bopa) to stabilize the catalytically active Fe center, resulting in isola ...
American Chemical Society2015
Show more
Related concepts (1)
Grignard reagent
A Grignard reagent or Grignard compound is a chemical compound with the general formula , where X is a halogen and R is an organic group, normally an alkyl or aryl. Two typical examples are methylmagnesium chloride and phenylmagnesium bromide . They are a subclass of the organomagnesium compounds. Grignard compounds are popular reagents in organic synthesis for creating new carbon-carbon bonds. For example, when reacted with another halogenated compound in the presence of a suitable catalyst, they typically yield and the magnesium halide as a byproduct; and the latter is insoluble in the solvents normally used.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.