Summary
Microbial biodegradation is the use of bioremediation and biotransformation methods to harness the naturally occurring ability of microbial xenobiotic metabolism to degrade, transform or accumulate environmental pollutants, including hydrocarbons (e.g. oil), polychlorinated biphenyls (PCBs), polyaromatic hydrocarbons (PAHs), heterocyclic compounds (such as pyridine or quinoline), pharmaceutical substances, radionuclides and metals. Interest in the microbial biodegradation of pollutants has intensified in recent years, and recent major methodological breakthroughs have enabled detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms, providing new insights into biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. Biological processes play a major role in the removal of contaminants and take advantage of the catabolic versatility of microorganisms to degrade or convert such compounds. In environmental microbiology, genome-based global studies are increasing the understanding of metabolic and regulatory networks, as well as providing new information on the evolution of degradation pathways and molecular adaptation strategies to changing environmental conditions. The increasing amount of bacterial genomic data provides new opportunities for understanding the genetic and molecular bases of the degradation of organic pollutants. Aromatic compounds are among the most persistent of these pollutants and lessons can be learned from the recent genomic studies of Burkholderia xenovorans LB400 and Rhodococcus sp. strain RHA1, two of the largest bacterial genomes completely sequenced to date. These studies have helped expand our understanding of bacterial catabolism, non-catabolic physiological adaptation to organic compounds, and the evolution of large bacterial genomes. First, the metabolic pathways from phylogenetically diverse isolates are very similar with respect to overall organization.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (22)