Land-use forecasting undertakes to project the distribution and intensity of trip generating activities in the urban area. In practice, land-use models are demand-driven, using as inputs the aggregate information on growth produced by an aggregate economic forecasting activity. Land-use estimates are inputs to the transportation planning process.
The discussion of land-use forecasting to follow begins with a review of the Chicago Area Transportation Study (CATS) effort. CATS researchers did interesting work, but did not produce a transferable forecasting model, and researchers elsewhere worked to develop models. After reviewing the CATS work, the discussion will turn to the first model to be widely known and emulated: the Lowry model developed by Ira S. Lowry when he was working for the Pittsburgh Regional Economic Study. Second and third generation Lowry models are now available and widely used, as well as interesting features incorporated in models that are not widely used.
Today, the transportation planning activities attached to metropolitan planning organizations are the loci for the care and feeding of regional land-use models. In the US, interest in and use of models is growing rapidly, after an extended period of limited use. Interest is also substantial in Europe and elsewhere.
Even though the majority of metropolitan planning agencies in the US do not use formal land-use models, we need to understand the subject: the concepts and analytic tools shape how land-use/transportation matters are thought about and handled; there is a good bit of interest in the research community where there have been important developments; and a new generation of land-use models such as LEAM and UrbanSim has developed since the 1990s that depart from these aggregate models, and incorporate innovations in discrete choice modeling, microsimulation, dynamics, and geographic information systems.
In brief, the CATS analysis of the 1950s was “by mind and hand” distribute growth. The product was maps developed with a rule-based process.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Transportation forecasting is the attempt of estimating the number of vehicles or people that will use a specific transportation facility in the future. For instance, a forecast may estimate the number of vehicles on a planned road or bridge, the ridership on a railway line, the number of passengers visiting an airport, or the number of ships calling on a seaport. Traffic forecasting begins with the collection of data on current traffic. This traffic data is combined with other known data, such as population, employment, trip rates, travel costs, etc.
Trip distribution (or destination choice or zonal interchange analysis) is the second component (after trip generation, but before mode choice and route assignment) in the traditional four-step transportation forecasting model. This step matches tripmakers’ origins and destinations to develop a “trip table”, a matrix that displays the number of trips going from each origin to each destination. Historically, this component has been the least developed component of the transportation planning model.
Route assignment, route choice, or traffic assignment concerns the selection of routes (alternatively called paths) between origins and destinations in transportation networks. It is the fourth step in the conventional transportation forecasting model, following trip generation, trip distribution, and mode choice. The zonal interchange analysis of trip distribution provides origin-destination trip tables. Mode choice analysis tells which travelers will use which mode.
Introduce the major elements of transportation systems and create awareness of the broader context
Develop basic skills in applying the fundamentals of the transportation field
Discusses demand management, forecasting methods, and steps in demand forecasting, emphasizing the importance of accurate forecasts.
, ,
Various interactions, time arrangements, and constraints exist for individuals scheduling their day as a member of a household, which affect their in-home as well as out-of-home activity schedule. However, the existing activity-based models are mostly base ...
2023
, ,
Various interactions, time arrangements, and constraints exist for individuals scheduling their day as a member of a household, which affect their in-home as well as out-of-home activity schedule. However, the existing activity-based models are mostly base ...
Vehicle sharing systems (VSSs) allow users to rent vehicles for a short period of time, in a more flexible and convenient manner compared to the traditional vehicle rental services. The long-term VSS subscription replaces the need for contract signing for ...