Concept

Anaerobic oxidation of methane

Summary
Anaerobic oxidation of methane (AOM) is a methane-consuming microbial process occurring in anoxic marine and freshwater sediments. AOM is known to occur among mesophiles, but also in psychrophiles, thermophiles, halophiles, acidophiles, and alkophiles. During AOM, methane is oxidized with different terminal electron acceptors such as sulfate, nitrate, nitrite and metals, either alone or in syntrophy with a partner organism. The overall reaction is: CH4 + SO42− → HCO3− + HS− + H2O Sulfate-driven AOM is mediated by a syntrophic consortium of methanotrophic archaea and sulfate-reducing bacteria. They often form small aggregates or sometimes voluminous mats. The archaeal partner is abbreviated ANME, which stands for "anaerobic methanotroph". ANME's are very closely related to methanogenic archaea and recent investigations suggest that AOM is an enzymatic reversal of methanogenesis. It is still poorly understood how the syntrophic partners interact and which intermediates are exchanged between the archaeal and bacterial cell. The research on AOM is hindered by the fact that the responsible organisms have not been isolated. This is because these organisms show very slow growth rates with a minimum doubling time of a few months. Countless isolation efforts have not been able to isolate one of the anaerobic methanotrophs, a possible explanation can be that the ANME archaea and the SRB have an obligate syntrophic interaction and can therefore not be isolated individually. In benthic marine areas with strong methane releases from fossil reservoirs (e.g. at cold seeps, mud volcanoes or gas hydrate deposits) AOM can be so high that chemosynthetic organisms like filamentous sulfur bacteria (see Beggiatoa) or animals (clams, tube worms) with symbiont sulfide-oxidizing bacteria can thrive on the large amounts of hydrogen sulfide that are produced during AOM. The bicarbonate (HCO3−) produced from AOM can (i) get sequestered in the sediments by the precipitation of calcium carbonate or so-called methane-derived authigenic carbonates and (ii) get released to the overlying water column.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
ChE-410: Catalysis for emission control and energy processes
The course is an introduction to heterogeneous catalysis for environmental protection and energy production. It focusses on catalytic exhaust gas cleaning as well as catalytic systems relevant for gas
ENV-202: Microbiology for engineers
"Microbiology for engineers" covers the main microbial processes that take place in the environment and in treatment systems. It presents elemental cycles that are catalyzed by microorganisms and that
Related lectures (8)
Methane Cycling: Microbial Transformations
Delves into microbial methane cycling, covering methanogens, methanogenesis, methane oxidation, and microbial interactions in anaerobic environments.
Methanogenesis: Biochemical Pathways and Coenzymes
Explores methanogenesis, covering the three types and the coenzymes involved.
Show more
Related publications (5)
Related concepts (1)
Archaea
Archaea (ɑrˈkiːə ; : archaeon ɑrˈkiːən ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from the other two domains, Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla.