Ali H. SayedAli H. Sayed is Dean of Engineering at EPFL, Switzerland, where he also leads the Adaptive Systems Laboratory. He has also served as Distinguished Professor and Chairman of Electrical Engineering at UCLA. He is recognized as a Highly Cited Researcher and is a member of the US National Academy of Engineering. He is also a member of the World Academy of Sciences and served as President of the IEEE Signal Processing Society during 2018 and 2019.
Dr. Sayed is an author/co-author of over 570 scholarly publications and six books. His research involves several areas
including adaptation and learning theories, data and network sciences, statistical inference, and multiagent systems.
His work has been recognized with several major awards including the 2022 IEEE Fourier Award, the 2020 Norbert Wiener Society Award and the 2015 Education Award from the IEEE Signal Processing Society, the 2014 Papoulis Award from the European Association for Signal Processing, the 2013 Meritorious Service Award and the 2012 Technical Achievement Award from the IEEE Signal Processing Society, the 2005 Terman Award from the American Society for Engineering Education, the 2005 Distinguished Lecturer from the IEEE Signal Processing Society, the 2003 Kuwait Prize, and the 1996 IEEE Donald G. Fink Prize. His publications have been awarded several Best Paper Awards from the IEEE (2002, 2005, 2012, 2014) and EURASIP (2015). He is a Fellow of IEEE, EURASIP, and the American Association for the Advancement of Science (AAAS); the publisher of the journal Science.
Dominique BonvinDominique Bonvin is Professor and Director of the Automatic Control Laboratory of EPFL. He received his Diploma in Chemical Engineering from ETH Zürich, and his Ph.D. degree from the University of California, Santa Barbara. He worked in the field of process control for the Sandoz Corporation in Basel and with the Systems Engineering Group of ETH Zürich. He joined the EPFL in 1989, where his current research interests include modeling, control and optimization of dynamic systems. He served as Director of the Automatic Control Laboratory for the periods 1993-97, 2003-2007 and again since 2012, Head of the Mechanical Engineering Department in 1995-97 and Dean of Bachelor and Master Studies at EPFL for the period 2004-2011.
Robert DalangRobert Dalang, né en 1961, a reçu le diplôme de Mathématicien-EPFL en 1983 et est lauréat du Prix Dommer. Il passe l'année 1985-86 à Cornell University (USA) comme chercheur invité. Il obtient le doctorat au Département de mathématiques de l'EPFL en 1987. Son domaine de spécialisation est la théorie des processeurs stochastiques. En 1987, Robert Dalang est nommé professeur assistant au Département de statistiques de l'Université de Californie à Berkeley (USA). En 1988, il reçoit une bourse post-doctorale du Fonds national scientifique américain et effectue des recherches sur les propriétés markoviennes de processus stochastiques à plusieurs paramètres. En 1990, il est nommé à Tufts University (Boston, USA). Il est promu professeur associé en mai 1993. Une partie importante de ses recherches se font dans le cadre de contrats avec le Fonds national scientifique américain et l'Office de la recherche de l'armée américaine. En collaboration avec le Prof. R. Cairoli du Département de mathématiques de l'EPFL, il a écrit un livre sur l'optimisation stochastique séquentielle publié en 1996 aux éditions John Wiley. M. Dalang est nommé professeur extraordinaire de probabilités au Département de mathématiques en 1995. Il y poursuit des travaux de recherche en processus stochastiques et probabilité appliquée et participe à l'enseignement des processus stochastiques, de la théorie des probabilités et des cours de mathématiques aux sections d'ingénieurs. Il dirige régulièrement des thèses de doctorats, est éditeur de plusieurs journaux de recherche mathématique et travail en collaboration avec des chercheurs de plusieurs universités européennes et américaines.
Maryam KamgarpourMaryam Kamgarpour holds a Doctor of Philosophy in Engineering from the University of California, Berkeley and a Bachelor of Applied Science from University of Waterloo, Canada. Her research is on safe decision-making and control under uncertainty, game theory and mechanism design, mixed integer and stochastic optimization and control. Her theoretical research is motivated by control challenges arising in intelligent transportation networks, robotics, power grid systems and healthcare. She is the recipient of NASA High Potential Individual Award, NASA Excellence in Publication Award, and the European Union (ERC) Starting Grant.
Nicolas Henri Bernard FlammarionNicolas Flammarion is a tenure-track assistant professor in computer science at EPFL. Prior to that, he was a postdoctoral fellow at UC Berkeley, hosted by Michael I. Jordan. He received his PhD in 2017 from Ecole Normale Superieure in Paris, where he was advised by Alexandre d’Aspremont and Francis Bach. In 2018 he received the prize of the Fondation Mathematique Jacques Hadamard for the best PhD thesis in the field of optimization. His research focuses primarily on learning problems at the interface of machine learning, statistics and optimization.