A double layer is a structure in a plasma consisting of two parallel layers of opposite electrical charge. The sheets of charge, which are not necessarily planar, produce localised excursions of electric potential, resulting in a relatively strong electric field between the layers and weaker but more extensive compensating fields outside, which restore the global potential. Ions and electrons within the double layer are accelerated, decelerated, or deflected by the electric field, depending on their direction of motion.
Double layers can be created in discharge tubes, where sustained energy is provided within the layer for electron acceleration by an external power source. Double layers are claimed to have been observed in the aurora and are invoked in astrophysical applications. Similarly, a double layer in the auroral region requires some external driver to produce electron acceleration.
Electrostatic double layers are especially common in current-carrying plasmas, and are very thin (typically tens of Debye lengths), compared to the sizes of the plasmas that contain them. Other names for a double layer are electrostatic double layer, electric double layer, plasma double layers. The term ‘electrostatic shock’ in the magnetosphere has been applied to electric fields oriented at an oblique angle to the magnetic field in such a way that the perpendicular electric field is much stronger than the parallel electric field, In laser physics, a double layer is sometimes called an ambipolar electric field.
Double layers are conceptually related to the concept of a 'sheath' (see Debye sheath). An early review of double layers from laboratory experiment and simulations is provided by Torvén.
Double layers may be classified in the following ways:
Weak and strong double layers. The strength of a double layer is expressed as the ratio of the potential drop in comparison with the plasma's equivalent thermal energy, or in comparison with the rest mass energy of the electrons.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
Plasma () is one of four fundamental states of matter, characterized by the presence of a significant portion of charged particles in any combination of ions or electrons. It is the most abundant form of ordinary matter in the universe, being mostly associated with stars, including the Sun. Extending to the rarefied intracluster medium and possibly to intergalactic regions, plasma can be artificially generated by heating a neutral gas or subjecting it to a strong electromagnetic field.
Magnetohydrodynamics (MHD; also called magneto-fluid dynamics or hydromagnetics) is a model of electrically conducting fluids that treats all interpenetrating particle species together as a single continuous medium. It is primarily concerned with the low-frequency, large-scale, magnetic behavior in plasmas and liquid metals and has applications in numerous fields including geophysics, astrophysics, and engineering. The word magnetohydrodynamics is derived from magneto- meaning magnetic field, hydro- meaning water, and dynamics meaning movement.
The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between 0.5keV. The composition of the solar wind plasma also includes a mixture of materials found in the solar plasma: trace amounts of heavy ions and atomic nuclei of elements such as C, N, O, Ne, Mg, Si, S, and Fe. There are also rarer traces of some other nuclei and isotopes such as P, Ti, Cr, 54Fe and 56Fe, and 58Ni, 60Ni, and 62Ni.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Simulations of plasma turbulence in a linear plasma device configuration are presented. These simulations are based on a simplified version of the gyrokinetic (GK) model proposed by Frei et al. [J. Plasma Phys. 86, 905860205 (2020)], where the full-F distr ...
Using the GKEngine code which simulates an electrostatic plasma with adiabatic electron response under a sheared-slab geometry, an attempt at developing a hybrid approach between the delta-f and full-f schemes to describe plasma profiles exhibiting high fl ...
In a recent discovery (Wen et al 2022 Phys. Rev. Lett. 129 045001), streaming waves were found in multipactor-induced plasma discharges. However, due to the limitations of a 1D simulation setup, these waves displayed only transverse dynamics. In this lette ...