In theoretical physics, a gravitational anomaly is an example of a gauge anomaly: it is an effect of quantum mechanics — usually a one-loop diagram—that invalidates the general covariance of a theory of general relativity combined with some other fields. The adjective "gravitational" is derived from the symmetry of a gravitational theory, namely from general covariance. A gravitational anomaly is generally synonymous with diffeomorphism anomaly, since general covariance is symmetry under coordinate reparametrization; i.e. diffeomorphism.
General covariance is the basis of general relativity, the classical theory of gravitation. Moreover, it is necessary for the consistency of any theory of quantum gravity, since it is required in order to cancel unphysical degrees of freedom with a negative norm, namely gravitons polarized along the time direction. Therefore, all gravitational anomalies must cancel out.
The anomaly usually appears as a Feynman diagram with a chiral fermion running in the loop (a polygon) with n external gravitons attached to the loop where where is the spacetime dimension.
Consider a classical gravitational field represented by the vielbein and a quantized Fermi field . The generating functional for this quantum field is
where is the quantum action and the factor before the Lagrangian is the vielbein determinant, the variation of the quantum action renders
in which we denote a mean value with respect to the path integral by the bracket . Let us label the Lorentz, Einstein and Weyl transformations respectively by their parameters ; they spawn the following anomalies:
Lorentz anomaly
which readily indicates that the energy-momentum tensor has an anti-symmetric part.
Einstein anomaly
this is related to the non-conservation of the energy-momentum tensor, i.e. .
Weyl anomaly
which indicates that the trace is non-zero.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken (and energy dissipation rate finite) at the limit of vanishing viscosity.
Some topics covered in this class are: The Index theorem, solitons, topological band insulators/superconductors, bulk-edge correpondence, quantum anomalies, quantum pumping, symmetry protected topolog
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
We revisit the calculation of chiral anomalies for global and gauge symmetries in the framework of the covariant derivative expansion (CDE). Due to the presence of UV divergences, the result is an ambiguous quantity that depends on the regularization proce ...
In the standard model of particle physics, the chiral anomaly can occur in relativistic plasmas and plays a role in the early Universe, protoneutron stars, heavy-ion collisions, and quantum materials. It gives rise to a magnetic instability if the number d ...
In this Letter, we address the question of whether the conformal invariance can be considered as a global symmetry of a theory of fundamental interactions. To describe Nature, this theory must contain a mechanism of spontaneous breaking of the scale symmet ...