A nanomotor is a molecular or nanoscale device capable of converting energy into movement. It can typically generate forces on the order of piconewtons.
While nanoparticles have been utilized by artists for centuries, such as in the famous Lycurgus cup, scientific research into nanotechnology did not come about until recently. In 1959, Richard Feynman gave a famous talk entitled "There's Plenty of Room at the Bottom" at the American Physical Society's conference hosted at Caltech. He went on to wage a scientific bet that no one person could design a motor smaller than 400 μm on any side. The purpose of the bet (as with most scientific bets) was to inspire scientists to develop new technologies, and anyone who could develop a nanomotor could claim the $1,000 USD prize. However, his purpose was thwarted by William McLellan, who fabricated a nanomotor without developing new methods. Nonetheless, Richard Feynman's speech inspired a new generation of scientists to pursue research into nanotechnology.
Nanomotors are the focus of research for their ability to overcome microfluidic dynamics present at low Reynold's numbers. Scallop Theory explains that nanomotors must break symmetry to produce motion at low Reynold's numbers. In addition, Brownian motion must be considered because particle-solvent interaction can dramatically impact the ability of a nanomotor to traverse through a liquid. This can pose a significant problem when designing new nanomotors. Current nanomotor research seeks to overcome these problems, and by doing so, can improve current microfluidic devices or give rise to new technologies.
Significant research has been done to overcome microfluidic dynamics at low Reynolds numbers. Now, the more pressing challenge is to overcome issues such as biocompatibility, control on directionality and availability of fuel before nanomotors can be used for theranostic applications within the body.
Carbon nanotube nanomotor
In 2004, Ayusman Sen and Thomas E. Mallouk fabricated the first synthetic and autonomous nanomotor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Molecular motors are natural (biological) or artificial molecular machines that are the essential agents of movement in living organisms. In general terms, a motor is a device that consumes energy in one form and converts it into motion or mechanical work; for example, many protein-based molecular motors harness the chemical free energy released by the hydrolysis of ATP in order to perform mechanical work. In terms of energetic efficiency, this type of motor can be superior to currently available man-made motors.
Molecular machines are a class of molecules typically described as an assembly of a discrete number of molecular components intended to produce mechanical movements in response to specific stimuli, mimicking macromolecular devices such as switches and motors. Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes.
Nanotechnology, often shortened to nanotech, is the use of matter on atomic, molecular, and supramolecular scales for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal of precisely manipulating atoms and molecules for fabrication of macroscale products, also now referred to as molecular nanotechnology. A more generalized description of nanotechnology was subsequently established by the National Nanotechnology Initiative, which defined nanotechnology as the manipulation of matter with at least one dimension sized from 1 to 100 nanometers (nm).
Delves into supramolecular chemistry, focusing on molecular machines and motors, exploring design principles and experimental support for controlled motion.
Explores the impact of thermal fluctuations at the cellular scale, emphasizing randomness in biological processes and the distribution of kinetic energy in gas molecules.
Molecular machines offer many opportunities for the development of responsive materials and introduce autono-mous motion in molecular systems. While basic molecular switches and motors carry out one type of motion upon being exposed to an external stimulus ...
Being able to understand how optical forces emerge from the interaction of light with matter is paramount for controlling the motion of nanoparticles as well as powering nanomotors. The purpose of this work is to uncover the physical mechanisms at the orig ...
IEEE2022
,
Atomic force microscopy (AFM) is capable of nanoscale imaging but has so far only been used on cell surfaces when applied to a living cell. Here, we describe a step-by-step protocol for nanoendoscopy-AFM, which enables the imaging of nanoscale structures i ...