A tailhook, arresting hook, or arrester hook is a device attached to the empennage (rear) of some military fixed-wing aircraft. The hook is used to achieve rapid deceleration during routine landings aboard aircraft carrier flight decks at sea, or during emergency landings or aborted takeoffs at properly equipped airports. The tailhook was first demonstrated at sea on 18 January 1911 by the aviator Eugene Ely, having successfully landed aboard the armored cruiser USS Pennsylvania with the aid of the device. It was not until the early 1920s that a practical system, paired with deck-mounted arresting gear, was devised and put into use. During the 1930s, numerous vessels were thus equipped, permitting the use of increasingly heavy combat aircraft at sea during the Second World War. Following the introduction of jet-powered aircraft during the 1950s, arrestor technology was further advanced to permit aircraft operating at greater speeds and weights to land aboard aircraft carriers. The system has continued to see widespread use into the twenty-first century. On 18 January 1911, the aviator Eugene Ely flew his Curtiss pusher airplane from the Tanforan airfield in San Bruno, California, and landed on a platform on the armored cruiser USS Pennsylvania anchored in San Francisco Bay, in the first recorded shipboard landing of an aircraft. This flight was also the first ever to use a tailhook system, which had been both designed and built by the circus performer and aviator Hugh Robinson. Following the flight, Ely remarked to a reporter that: "It was easy enough. I think the trick could be successfully turned nine times out of ten." Roughly four months later, the United States Navy would requisition its first airplane, an occasion often viewed as a milestone of naval aviation. While the system initially drew only limited attention, there was greater recognition of its merits following the outbreak of the First World War. Naval planners acknowledged that, in order for airplanes to be viable naval assets, they would have to be able to both take off from and land on ships.